These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23442914)

  • 1. Membrane interactions and pore formation by the antimicrobial peptide protegrin.
    Lazaridis T; He Y; Prieto L
    Biophys J; 2013 Feb; 104(3):633-42. PubMed ID: 23442914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-Barrels and Arcs.
    Lipkin RB; Lazaridis T
    J Membr Biol; 2015 Jun; 248(3):469-86. PubMed ID: 25430621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimerization of protegrin-1 in different environments.
    Vivcharuk V; Kaznessis YN
    Int J Mol Sci; 2010 Sep; 11(9):3177-94. PubMed ID: 20957087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane Pore Structures of β-Hairpin Antimicrobial Peptides by All-Atom Simulations.
    Lipkin R; Pino-Angeles A; Lazaridis T
    J Phys Chem B; 2017 Oct; 121(39):9126-9140. PubMed ID: 28879767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
    Mani R; Waring AJ; Hong M
    Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR.
    Mani R; Cady SD; Tang M; Waring AJ; Lehrer RI; Hong M
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16242-7. PubMed ID: 17060626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptide protegrin-3 adopt an antiparallel dimer in the presence of DPC micelles: a high-resolution NMR study.
    Usachev KS; Efimov SV; Kolosova OA; Klochkova EA; Aganov AV; Klochkov VV
    J Biomol NMR; 2015 May; 62(1):71-9. PubMed ID: 25786621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein arcs may form stable pores in lipid membranes.
    Prieto L; He Y; Lazaridis T
    Biophys J; 2014 Jan; 106(1):154-61. PubMed ID: 24411247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation.
    Khandelia H; Kaznessis YN
    Biochim Biophys Acta; 2007 Mar; 1768(3):509-20. PubMed ID: 17254546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational prediction of the optimal oligomeric state for membrane-inserted β-barrels of protegrin-1 and related mutants.
    Lipkin R; Lazaridis T
    J Pept Sci; 2017 Apr; 23(4):334-345. PubMed ID: 28382709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligomerization of the antimicrobial peptide Protegrin-5 in a membrane-mimicking environment. Structural studies by high-resolution NMR spectroscopy.
    Usachev KS; Kolosova OA; Klochkova EA; Yulmetov AR; Aganov AV; Klochkov VV
    Eur Biophys J; 2017 Apr; 46(3):293-300. PubMed ID: 27589857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Computational Characterization of Oxidized and Reduced Protegrin Pores in Lipid Bilayers.
    Rodnin MV; Vasquez-Montes V; Nepal B; Ladokhin AS; Lazaridis T
    J Membr Biol; 2020 Jun; 253(3):287-298. PubMed ID: 32500172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial peptides in toroidal and cylindrical pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1485-93. PubMed ID: 20403332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers.
    Shenkarev ZO; Balandin SV; Trunov KI; Paramonov AS; Sukhanov SV; Barsukov LI; Arseniev AS; Ovchinnikova TV
    Biochemistry; 2011 Jul; 50(28):6255-65. PubMed ID: 21627330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1.
    Buffy JJ; McCormick MJ; Wi S; Waring A; Lehrer RI; Hong M
    Biochemistry; 2004 Aug; 43(30):9800-12. PubMed ID: 15274634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study.
    Cheraghi N; Hosseini M; Mohammadinejad S
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational study of the protegrin-1 (PG-1) dimer interaction with lipid bilayers and its effect.
    Jang H; Ma B; Nussinov R
    BMC Struct Biol; 2007 Apr; 7():21. PubMed ID: 17407565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.