BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23443056)

  • 1. Groundnut improvement: use of genetic and genomic tools.
    Janila P; Nigam SN; Pandey MK; Nagesh P; Varshney RK
    Front Plant Sci; 2013; 4():23. PubMed ID: 23443056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Tools in Groundnut Breeding Program: Status and Perspectives.
    Janila P; Variath MT; Pandey MK; Desmae H; Motagi BN; Okori P; Manohar SS; Rathnakumar AL; Radhakrishnan T; Liao B; Varshney RK
    Front Plant Sci; 2016; 7():289. PubMed ID: 27014312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.).
    Ravi K; Vadez V; Isobe S; Mir RR; Guo Y; Nigam SN; Gowda MV; Radhakrishnan T; Bertioli DJ; Knapp SJ; Varshney RK
    Theor Appl Genet; 2011 Apr; 122(6):1119-32. PubMed ID: 21191568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.).
    Varshney RK; Bertioli DJ; Moretzsohn MC; Vadez V; Krishnamurthy L; Aruna R; Nigam SN; Moss BJ; Seetha K; Ravi K; He G; Knapp SJ; Hoisington DA
    Theor Appl Genet; 2009 Feb; 118(4):729-39. PubMed ID: 19048225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics, genomics and breeding of groundnut (
    Desmae H; Janila P; Okori P; Pandey MK; Motagi BN; Monyo E; Mponda O; Okello D; Sako D; Echeckwu C; Oteng-Frimpong R; Miningou A; Ojiewo C; Varshney RK
    Plant Breed; 2019 Aug; 138(4):425-444. PubMed ID: 31598026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.
    Varshney RK; Kudapa H; Roorkiwal M; Thudi M; Pandey MK; Saxena RK; Chamarthi SK; Mohan SM; Mallikarjuna N; Upadhyaya H; Gaur PM; Krishnamurthy L; Saxena KB; Nigam SN; Pande S
    J Biosci; 2012 Nov; 37(5):811-20. PubMed ID: 23107917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational genomics for achieving higher genetic gains in groundnut.
    Pandey MK; Pandey AK; Kumar R; Nwosu CV; Guo B; Wright GC; Bhat RS; Chen X; Bera SK; Yuan M; Jiang H; Faye I; Radhakrishnan T; Wang X; Liang X; Liao B; Zhang X; Varshney RK; Zhuang W
    Theor Appl Genet; 2020 May; 133(5):1679-1702. PubMed ID: 32328677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.).
    Khera P; Pandey MK; Mallikarjuna N; Sriswathi M; Roorkiwal M; Janila P; Sharma S; Shilpa K; Sudini H; Guo B; Varshney RK
    Mol Genet Genomics; 2019 Apr; 294(2):365-378. PubMed ID: 30467595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Genetic Map Identified Major QTLs for Drought Tolerance- and Iron Deficiency Tolerance-Related Traits in Groundnut.
    Pandey MK; Gangurde SS; Sharma V; Pattanashetti SK; Naidu GK; Faye I; Hamidou F; Desmae H; Kane NA; Yuan M; Vadez V; Nigam SN; Varshney RK
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (
    Zongo A; Khera P; Sawadogo M; Shasidhar Y; Sriswathi M; Vishwakarma MK; Sankara P; Ntare BR; Varshney RK; Pandey MK; Desmae H
    Biotechnol Rep (Amst); 2017 Sep; 15():132-137. PubMed ID: 28856109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut.
    Dodia SM; Joshi B; Gangurde SS; Thirumalaisamy PP; Mishra GP; Narandrakumar D; Soni P; Rathnakumar AL; Dobaria JR; Sangh C; Chitikineni A; Chanda SV; Pandey MK; Varshney RK; Thankappan R
    Theor Appl Genet; 2019 Apr; 132(4):1001-1016. PubMed ID: 30539317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome.
    Moretzsohn Mde C; Hopkins MS; Mitchell SE; Kresovich S; Valls JF; Ferreira ME
    BMC Plant Biol; 2004 Jul; 4():11. PubMed ID: 15253775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Mapping of Oil Content and Fatty Acids Using Dense Genetic Maps in Groundnut (
    Shasidhar Y; Vishwakarma MK; Pandey MK; Janila P; Variath MT; Manohar SS; Nigam SN; Guo B; Varshney RK
    Front Plant Sci; 2017; 8():794. PubMed ID: 28588591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.).
    Huang L; He H; Chen W; Ren X; Chen Y; Zhou X; Xia Y; Wang X; Jiang X; Liao B; Jiang H
    Theor Appl Genet; 2015 Jun; 128(6):1103-15. PubMed ID: 25805315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation.
    Rajpal VR; Singh A; Kathpalia R; Thakur RK; Khan MK; Pandey A; Hamurcu M; Raina SN
    Front Plant Sci; 2023; 14():1127239. PubMed ID: 36998696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic approaches for genetic improvement in groundnut (
    Gantait S; Mondal S
    J Genet Eng Biotechnol; 2018 Dec; 16(2):537-544. PubMed ID: 30733771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating genetic maps in bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes.
    Ho WK; Chai HH; Kendabie P; Ahmad NS; Jani J; Massawe F; Kilian A; Mayes S
    BMC Genomics; 2017 Feb; 18(1):192. PubMed ID: 28219341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.).
    Gautami B; Pandey MK; Vadez V; Nigam SN; Ratnakumar P; Krishnamurthy L; Radhakrishnan T; Gowda MV; Narasu ML; Hoisington DA; Knapp SJ; Varshney RK
    Mol Breed; 2012 Aug; 30(2):757-772. PubMed ID: 22924017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome.
    Hong Y; Chen X; Liang X; Liu H; Zhou G; Li S; Wen S; Holbrook CC; Guo B
    BMC Plant Biol; 2010 Jan; 10():17. PubMed ID: 20105299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut.
    Varshney RK
    Plant Sci; 2016 Jan; 242():98-107. PubMed ID: 26566828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.