These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23443152)

  • 1. Scalable and direct growth of graphene micro ribbons on dielectric substrates.
    Wang D; Tian H; Yang Y; Xie D; Ren TL; Zhang Y
    Sci Rep; 2013; 3():1348. PubMed ID: 23443152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices.
    Wang Z; Xue Z; Zhang M; Wang Y; Xie X; Chu PK; Zhou P; Di Z; Wang X
    Small; 2017 Jul; 13(28):. PubMed ID: 28561931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.
    Wang H; Yu G
    Adv Mater; 2016 Jul; 28(25):4956-75. PubMed ID: 27122247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct chemical vapor deposition of graphene on dielectric surfaces.
    Ismach A; Druzgalski C; Penwell S; Schwartzberg A; Zheng M; Javey A; Bokor J; Zhang Y
    Nano Lett; 2010 May; 10(5):1542-8. PubMed ID: 20361753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano- and microstructuring of graphene using UV-NIL.
    Bergmair I; Hackl W; Losurdo M; Helgert C; Isic G; Rohn M; Jakovljevic MM; Mueller T; Giangregorio M; Kley EB; Fromherz T; Gajic R; Pertsch T; Bruno G; Muehlberger M
    Nanotechnology; 2012 Aug; 23(33):335301. PubMed ID: 22863600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition.
    Muñoz R; Munuera C; Martínez JI; Azpeitia J; Gómez-Aleixandre C; García-Hernández M
    2d Mater; 2017 Mar; 4(1):. PubMed ID: 28070341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.
    Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM
    ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Growth of Uniform Multi-Layer Graphene Films Directly on Silicon Dioxide Substrates.
    Zhou L; Wei S; Ge C; Zhao C; Guo B; Zhang J; Zhao J
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Growth of Highly Stable Patterned Graphene on Dielectric Insulators using a Surface-Adhered Solid Carbon Source.
    Lee E; Lee SG; Lee HC; Jo M; Yoo MS; Cho K
    Adv Mater; 2018 Apr; 30(15):e1706569. PubMed ID: 29473234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates.
    Khan A; Islam SM; Ahmed S; Kumar RR; Habib MR; Huang K; Hu M; Yu X; Yang D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800050. PubMed ID: 30479910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Area Millisecond Preparation of High-Quality, Few-Layer Graphene Films on Arbitrary Substrates via Xenon Flash Lamp Photothermal Pyrolysis and Their Application for High-Performance Micro-supercapacitors.
    Okoroanyanwu U; Bhardwaj A; Watkins JJ
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13495-13507. PubMed ID: 36854043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD.
    Vishwakarma R; Zhu R; Abuelwafa AA; Mabuchi Y; Adhikari S; Ichimura S; Soga T; Umeno M
    ACS Omega; 2019 Jun; 4(6):11263-11270. PubMed ID: 31460228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition.
    De Fazio D; Purdie DG; Ott AK; Braeuninger-Weimer P; Khodkov T; Goossens S; Taniguchi T; Watanabe K; Livreri P; Koppens FHL; Hofmann S; Goykhman I; Ferrari AC; Lombardo A
    ACS Nano; 2019 Aug; 13(8):8926-8935. PubMed ID: 31322332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics.
    Ho KI; Huang CH; Liao JH; Zhang W; Li LJ; Lai CS; Su CY
    Sci Rep; 2014 Jul; 4():5893. PubMed ID: 25081226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-dot doped, transfer-free, low-temperature, high mobility graphene using microwave plasma CVD.
    Mewada A; Vishwakarma R; Zhu R; Umeno M
    RSC Adv; 2022 Jul; 12(32):20610-20617. PubMed ID: 35919180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate.
    Wang H; Xue X; Jiang Q; Wang Y; Geng D; Cai L; Wang L; Xu Z; Yu G
    J Am Chem Soc; 2019 Jul; 141(28):11004-11008. PubMed ID: 31265267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications.
    Sun J; Chen Z; Yuan L; Chen Y; Ning J; Liu S; Ma D; Song X; Priydarshi MK; Bachmatiuk A; Rümmeli MH; Ma T; Zhi L; Huang L; Zhang Y; Liu Z
    ACS Nano; 2016 Dec; 10(12):11136-11144. PubMed ID: 28024341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications.
    Babichev AV; Gasumyants VE; Egorov AY; Vitusevich S; Tchernycheva M
    Nanotechnology; 2014 Aug; 25(33):335707. PubMed ID: 25074754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.