These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23443160)

  • 21. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases.
    Battistone MA; Da Ros VG; Salicioni AM; Navarrete FA; Krapf D; Visconti PE; Cuasnicú PS
    Mol Hum Reprod; 2013 Sep; 19(9):570-80. PubMed ID: 23630234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of conservation within and between the Ser/Thr and Tyr protein kinase family: proposed model for the catalytic domain of the epidermal growth factor receptor.
    Singh J
    Protein Eng; 1994 Jul; 7(7):849-58. PubMed ID: 7971947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein phosphorylation on Ser, Thr and Tyr residues in cyanobacteria.
    Zhang CC; Jang J; Sakr S; Wang L
    J Mol Microbiol Biotechnol; 2005; 9(3-4):154-66. PubMed ID: 16415589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of Phosphoglycerate Mutase 5 Reduces Necroptosis in Rat Hearts Following Ischemia/Reperfusion Through Suppression of Dynamin-Related Protein 1.
    She L; Tu H; Zhang YZ; Tang LJ; Li NS; Ma QL; Liu B; Li Q; Luo XJ; Peng J
    Cardiovasc Drugs Ther; 2019 Feb; 33(1):13-23. PubMed ID: 30637549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domain architectural census of eukaryotic gene products containing O-protein phosphatases.
    Bhaduri A; Sowdhamini R
    Gene; 2006 Feb; 366(2):246-55. PubMed ID: 16253443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of phosphate and trivanadate complexes of Bacillus stearothermophilus phosphatase PhoE: structural and functional analysis in the cofactor-dependent phosphoglycerate mutase superfamily.
    Rigden DJ; Littlejohn JE; Henderson K; Jedrzejas MJ
    J Mol Biol; 2003 Jan; 325(3):411-20. PubMed ID: 12498792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer.
    Gao PP; Qi XW; Sun N; Sun YY; Zhang Y; Tan XN; Ding J; Han F; Zhang Y
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188562. PubMed ID: 33964330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PTEN and myotubularin: novel phosphoinositide phosphatases.
    Maehama T; Taylor GS; Dixon JE
    Annu Rev Biochem; 2001; 70():247-79. PubMed ID: 11395408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of domain combinations in protein kinases and its implications for functional diversity.
    Deshmukh K; Anamika K; Srinivasan N
    Prog Biophys Mol Biol; 2010 Jan; 102(1):1-15. PubMed ID: 20026163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms.
    Romá-Mateo C; Sacristán-Reviriego A; Beresford NJ; Caparrós-Martín JA; Culiáñez-Macià FA; Martín H; Molina M; Tabernero L; Pulido R
    Mol Genet Genomics; 2011 Apr; 285(4):341-54. PubMed ID: 21409566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Extended Family of Protein Tyrosine Phosphatases.
    Alonso A; Nunes-Xavier CE; Bayón Y; Pulido R
    Methods Mol Biol; 2016; 1447():1-23. PubMed ID: 27514797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The extended human PTPome: a growing tyrosine phosphatase family.
    Alonso A; Pulido R
    FEBS J; 2016 Apr; 283(8):1404-29. PubMed ID: 26573778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
    Barford D; Das AK; Egloff MP
    Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic studies on protein tyrosine phosphatases.
    Zhang ZY
    Prog Nucleic Acid Res Mol Biol; 2003; 73():171-220. PubMed ID: 12882518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PGAM5: A crucial role in mitochondrial dynamics and programmed cell death.
    Cheng M; Lin N; Dong D; Ma J; Su J; Sun L
    Eur J Cell Biol; 2021 Jan; 100(1):151144. PubMed ID: 33370650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The multi-functional eyes absent proteins.
    Hegde RS; Roychoudhury K; Pandey RN
    Crit Rev Biochem Mol Biol; 2020 Aug; 55(4):372-385. PubMed ID: 32727223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viewing serine/threonine protein phosphatases through the eyes of drug designers.
    Zhang M; Yogesha SD; Mayfield JE; Gill GN; Zhang Y
    FEBS J; 2013 Oct; 280(19):4739-60. PubMed ID: 23937612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans.
    Fatima S; Shukla S; Nazir A
    Protein J; 2018 Dec; 37(6):572-580. PubMed ID: 30242660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Ser/Thr protein phosphatases in cell death regulation.
    Sun H; Wang Y
    Physiology (Bethesda); 2012 Feb; 27(1):43-52. PubMed ID: 22311969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unexpected catalytic site variation in phosphoprotein phosphatase homologues of cofactor-dependent phosphoglycerate mutase.
    Rigden DJ
    FEBS Lett; 2003 Feb; 536(1-3):77-84. PubMed ID: 12586342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.