These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 23443367)
21. Characterization of odorous industrial plumes by coupling fast and slow mass spectrometry techniques for volatile organic compounds. Liu WT; Liao WC; Griffith SM; Chang CC; Wu YC; Wang CH; Wang JL Chemosphere; 2022 Oct; 304():135304. PubMed ID: 35697108 [TBL] [Abstract][Full Text] [Related]
22. Molecular analysis of semen-like odor emitted by chestnut flowers using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry. Zhang X; Ji Y; Zhang Y; Liu F; Chen H; Liu J; Handberg ES; Chagovets VV; Chingin K Anal Bioanal Chem; 2019 Jul; 411(18):4103-4112. PubMed ID: 30450509 [TBL] [Abstract][Full Text] [Related]
23. Rapid and sensitive on-line monitoring 6 different kinds of volatile organic compounds in aqueous samples by spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS). Zou X; Kang M; Wang H; Huang C; Shen C; Chu Y Chemosphere; 2017 Jun; 177():217-223. PubMed ID: 28288430 [TBL] [Abstract][Full Text] [Related]
24. Comparison of Organosulfur and Amino Acid Composition between Triploid Onion Fredotović Ž; Soldo B; Šprung M; Marijanović Z; Jerković I; Puizina J Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31941040 [TBL] [Abstract][Full Text] [Related]
26. Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS. Capozzi V; Lonzarich V; Khomenko I; Cappellin L; Navarini L; Biasioli F Molecules; 2020 Mar; 25(5):. PubMed ID: 32164157 [TBL] [Abstract][Full Text] [Related]
27. Real-time monitoring of the metabolic capacity of ex vivo rat olfactory mucosa by proton transfer reaction mass spectrometry (PTR-MS). Schoumacker R; Robert-Hazotte A; Heydel JM; Faure P; Le Quéré JL Anal Bioanal Chem; 2016 Feb; 408(6):1539-43. PubMed ID: 26753976 [TBL] [Abstract][Full Text] [Related]
28. Effects of food materials on removal of Allium-specific volatile sulfur compounds. Negishi O; Negishi Y; Ozawa T J Agric Food Chem; 2002 Jun; 50(13):3856-61. PubMed ID: 12059171 [TBL] [Abstract][Full Text] [Related]
29. Applications of direct analysis in real time mass spectrometry (DART-MS) in Allium chemistry. 2-propenesulfenic and 2-propenesulfinic acids, diallyl trisulfane S-oxide, and other reactive sulfur compounds from crushed garlic and other Alliums. Block E; Dane AJ; Thomas S; Cody RB J Agric Food Chem; 2010 Apr; 58(8):4617-25. PubMed ID: 20225897 [TBL] [Abstract][Full Text] [Related]
30. Measuring odour emission and biofilter efficiency in composting plants by proton transfer reaction-mass spectrometry. Biasioli F; Aprea E; Gasperi F; Märk TD Water Sci Technol; 2009; 59(7):1263-9. PubMed ID: 19380990 [TBL] [Abstract][Full Text] [Related]
31. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering]. Si MZ; Zhang DQ; Liu RM Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2449-52. PubMed ID: 25532343 [TBL] [Abstract][Full Text] [Related]
32. Direct Injection Analysis of Fruit VOCs by PTR-ToF-MS: The Apple Case Study. Farneti B Methods Mol Biol; 2018; 1738():213-223. PubMed ID: 29654593 [TBL] [Abstract][Full Text] [Related]
33. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry. Perez-Hurtado P; Palmer E; Owen T; Aldcroft C; Allen MH; Jones J; Creaser CS; Lindley MR; Turner MA; Reynolds JC Rapid Commun Mass Spectrom; 2017 Nov; 31(22):1947-1956. PubMed ID: 28857369 [TBL] [Abstract][Full Text] [Related]
34. Novel experimental approach to study aroma release upon reconstitution of instant coffee products. Zanin RC; Smrke S; Kurozawa LE; Yamashita F; Yeretzian C Food Chem; 2020 Jul; 317():126455. PubMed ID: 32109659 [TBL] [Abstract][Full Text] [Related]
35. Comparison of direct mass spectrometry methods for the on-line analysis of volatile compounds in foods. Déléris I; Saint-Eve A; Sémon E; Guillemin H; Guichard E; Souchon I; Le Quéré JL J Mass Spectrom; 2013 May; 48(5):594-607. PubMed ID: 23674284 [TBL] [Abstract][Full Text] [Related]
36. Development of a disposable pyruvate biosensor to determine pungency in onions (Allium cepa L.). Abayomi LA; Terry LA; White SF; Warner PJ Biosens Bioelectron; 2006 May; 21(11):2176-9. PubMed ID: 16330200 [TBL] [Abstract][Full Text] [Related]
37. Flavonol glucoside profile of southern Italian red onion (Allium cepa L.). Bonaccorsi P; Caristi C; Gargiulli C; Leuzzi U J Agric Food Chem; 2005 Apr; 53(7):2733-40. PubMed ID: 15796618 [TBL] [Abstract][Full Text] [Related]
38. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421 [TBL] [Abstract][Full Text] [Related]
39. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization. Konduru T; Rains GC; Li C Sensors (Basel); 2015 Jan; 15(1):1252-73. PubMed ID: 25587975 [TBL] [Abstract][Full Text] [Related]
40. Addition of garlic or onion before irradiation on lipid oxidation, volatiles and sensory characteristics of cooked ground beef. Yang HS; Lee EJ; Moon SH; Paik HD; Ahn DU Meat Sci; 2011 Jun; 88(2):286-91. PubMed ID: 21277693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]