These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23443561)

  • 1. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean.
    Boyle RA; Clark JR; Poulton SW; Shields-Zhou G; Canfield DE; Lenton TM
    Nat Commun; 2013; 4():1533. PubMed ID: 23443561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.
    Johnston DT; Wolfe-Simon F; Pearson A; Knoll AH
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16925-9. PubMed ID: 19805080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using modern low-oxygen marine ecosystems to understand the nitrogen cycle of the Paleo- and Mesoproterozoic oceans.
    Fuchsman CA; Stüeken EE
    Environ Microbiol; 2021 Jun; 23(6):2801-2822. PubMed ID: 32869502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferruginous conditions dominated later neoproterozoic deep-water chemistry.
    Canfield DE; Poulton SW; Knoll AH; Narbonne GM; Ross G; Goldberg T; Strauss H
    Science; 2008 Aug; 321(5891):949-52. PubMed ID: 18635761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neoproterozoic transition in the marine nitrogen cycle.
    Sánchez-Baracaldo P; Ridgwell A; Raven JA
    Curr Biol; 2014 Mar; 24(6):652-7. PubMed ID: 24583016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of cellular metabolism and the rise of a globally productive biosphere.
    Braakman R
    Free Radic Biol Med; 2019 Aug; 140():172-187. PubMed ID: 31082508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transition to a sulphidic ocean approximately 1.84 billion years ago.
    Poulton SW; Fralick PW; Canfield DE
    Nature; 2004 Sep; 431(7005):173-7. PubMed ID: 15356628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread iron-rich conditions in the mid-Proterozoic ocean.
    Planavsky NJ; McGoldrick P; Scott CT; Li C; Reinhard CT; Kelly AE; Chu X; Bekker A; Love GD; Lyons TW
    Nature; 2011 Sep; 477(7365):448-51. PubMed ID: 21900895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran.
    Zheng W; Zhou A; Sahoo SK; Nolan MR; Ostrander CM; Sun R; Anbar AD; Xiao S; Chen J
    Nat Commun; 2023 Jul; 14(1):3920. PubMed ID: 37400445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.
    Klawonn I; Bonaglia S; Brüchert V; Ploug H
    ISME J; 2015 Jun; 9(6):1456-66. PubMed ID: 25575306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical evidence for widespread euxinia in the later Cambrian ocean.
    Gill BC; Lyons TW; Young SA; Kump LR; Knoll AH; Saltzman MR
    Nature; 2011 Jan; 469(7328):80-3. PubMed ID: 21209662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin.
    Shen Y; Knoll AH; Walter MR
    Nature; 2003 Jun; 423(6940):632-5. PubMed ID: 12789336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2.
    Owens JD; Gill BC; Jenkyns HC; Bates SM; Severmann S; Kuypers MM; Woodfine RG; Lyons TW
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18407-12. PubMed ID: 24170863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proterozoic ocean redox and biogeochemical stasis.
    Reinhard CT; Planavsky NJ; Robbins LJ; Partin CA; Gill BC; Lalonde SV; Bekker A; Konhauser KO; Lyons TW
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5357-62. PubMed ID: 23515332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preserved particulate organic carbon is likely derived from the subsurface sulfidic photic zone of the Proterozoic Ocean: evidence from a modern, oxygen-deficient lake.
    Cohen AB; Christensen LN; Weber F; Yagudaeva M; Lo E; Henkes GA; McCormick ML; Taylor GT
    Geobiology; 2024; 22(2):e12593. PubMed ID: 38476006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in North Atlantic nitrogen fixation controlled by ocean circulation.
    Straub M; Sigman DM; Ren H; Martínez-García A; Meckler AN; Hain MP; Haug GH
    Nature; 2013 Sep; 501(7466):200-3. PubMed ID: 23965620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance.
    Ozaki K; Reinhard CT; Tajika E
    Geobiology; 2019 Jan; 17(1):3-11. PubMed ID: 30281196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracing the stepwise oxygenation of the Proterozoic ocean.
    Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD
    Nature; 2008 Mar; 452(7186):456-9. PubMed ID: 18368114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of N(2) through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments.
    Thamdrup B; Dalsgaard T
    Appl Environ Microbiol; 2002 Mar; 68(3):1312-8. PubMed ID: 11872482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.