BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23444140)

  • 1. Large scale chromosomal mapping of human microRNA structural clusters.
    Mathelier A; Carbone A
    Nucleic Acids Res; 2013 Apr; 41(8):4392-408. PubMed ID: 23444140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of novel human breast cancer microRNAs from deep sequencing data by analysis of pri-microRNA secondary structures.
    Ryu S; Joshi N; McDonnell K; Woo J; Choi H; Gao D; McCombie WR; Mittal V
    PLoS One; 2011 Feb; 6(2):e16403. PubMed ID: 21346806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of conserved precursors of miRNAs and their mature forms by integrating position-specific structural features.
    Terai G; Okida H; Asai K; Mituyama T
    PLoS One; 2012; 7(9):e44314. PubMed ID: 22957063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of clustered microRNAs using an ab initio prediction method.
    Sewer A; Paul N; Landgraf P; Aravin A; Pfeffer S; Brownstein MJ; Tuschl T; van Nimwegen E; Zavolan M
    BMC Bioinformatics; 2005 Nov; 6():267. PubMed ID: 16274478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms.
    Chang TC; Pertea M; Lee S; Salzberg SL; Mendell JT
    Genome Res; 2015 Sep; 25(9):1401-9. PubMed ID: 26290535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing.
    Chang YY; Kuo WH; Hung JH; Lee CY; Lee YH; Chang YC; Lin WC; Shen CY; Huang CS; Hsieh FJ; Lai LC; Tsai MH; Chang KJ; Chuang EY
    Mol Cancer; 2015 Feb; 14():36. PubMed ID: 25888956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of microRNA-target interactions by a target structure based hybridization model.
    Long D; Chan CY; Ding Y
    Pac Symp Biocomput; 2008; ():64-74. PubMed ID: 18232104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNAs in Daphnia magna identified and characterized by deep sequencing, genome mapping and manual curation.
    Coucheron DH; Wojewodzic MW; Bøhn T
    Sci Rep; 2019 Nov; 9(1):15945. PubMed ID: 31685896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatic discovery of microRNA precursors from human ESTs and introns.
    Li SC; Pan CY; Lin WC
    BMC Genomics; 2006 Jul; 7():164. PubMed ID: 16813663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human MicroRNA targets.
    John B; Enright AJ; Aravin A; Tuschl T; Sander C; Marks DS
    PLoS Biol; 2004 Nov; 2(11):e363. PubMed ID: 15502875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural conservation versus functional divergence of maternally expressed microRNAs in the Dlk1/Gtl2 imprinting region.
    Kircher M; Bock C; Paulsen M
    BMC Genomics; 2008 Jul; 9():346. PubMed ID: 18651963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and characterization of conserved and novel microRNAs from blunt snout bream (Megalobrama amblycephala) by deep sequencing.
    Huang Y; Gong W; Xiong J; Gao XC; Ren HT
    Gene; 2018 May; 654():57-63. PubMed ID: 29466763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing.
    Zhang L; Wei P; Shen X; Zhang Y; Xu B; Zhou J; Fan S; Hao Z; Shi H; Zhang X; Kong R; Xu L; Gao J; Zou D; Liang C
    PLoS One; 2015; 10(7):e0131336. PubMed ID: 26158897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Drosophila MicroRNA targets.
    Stark A; Brennecke J; Russell RB; Cohen SM
    PLoS Biol; 2003 Dec; 1(3):E60. PubMed ID: 14691535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material.
    Laganà A; Russo F; Sismeiro C; Giugno R; Pulvirenti A; Ferro A
    PLoS One; 2010 Jun; 5(6):e11166. PubMed ID: 20567512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sequence and Structure Determine the Function of Mature Human miRNAs.
    Rolle K; Piwecka M; Belter A; Wawrzyniak D; Jeleniewicz J; Barciszewska MZ; Barciszewski J
    PLoS One; 2016; 11(3):e0151246. PubMed ID: 27031951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of DNA secondary structures in fragile site breakage along human chromosome 10.
    Dillon LW; Pierce LC; Ng MC; Wang YH
    Hum Mol Genet; 2013 Apr; 22(7):1443-56. PubMed ID: 23297364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing.
    Yang Q; Hua J; Wang L; Xu B; Zhang H; Ye N; Zhang Z; Yu D; Cooke HJ; Zhang Y; Shi Q
    PLoS One; 2013; 8(6):e66809. PubMed ID: 23826142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Japanese Macaque Rhadinovirus Encodes a Viral MicroRNA Mimic of the miR-17 Family.
    Skalsky RL; Barr SA; Jeffery AJ; Blair T; Estep R; Wong SW
    J Virol; 2016 Oct; 90(20):9350-63. PubMed ID: 27512057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.