BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23444275)

  • 1. Applications of transoral, transcervical, transnasal, and transpalatal corridors for robotic surgery of the skull base.
    Ozer E; Durmus K; Carrau RL; de Lara D; Ditzel Filho LF; Prevedello DM; Otto BA; Old MO
    Laryngoscope; 2013 Sep; 123(9):2176-9. PubMed ID: 23444275
    [No Abstract]   [Full Text] [Related]  

  • 2. Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base.
    Carrau RL; Prevedello DM; de Lara D; Durmus K; Ozer E
    Head Neck; 2013 Nov; 35(11):E351-8. PubMed ID: 23468360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical requirements and possible applications of robot assisted endoscopy in skull base and sinus surgery.
    Eichhorn KW; Bootz F
    Acta Neurochir Suppl; 2011; 109():237-40. PubMed ID: 20960349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Endoscopic Angular Domains of Transnasal and Transoral Routes to the Craniovertebral Junction: Light and Shade.
    Visocchi M; Pappalardo G; Pileggi M; Signorelli F; Paludetti G; La Rocca G
    Spine (Phila Pa 1976); 2016 Apr; 41(8):669-77. PubMed ID: 26807815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined transnasal transcervical robotic dissection of posterior skull base: feasibility in a cadaveric model.
    Dallan I; Castelnuovo P; Seccia V; Battaglia P; Montevecchi F; Tschabitscher M; Vicini C
    Rhinology; 2012 Jun; 50(2):165-70. PubMed ID: 22616077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endonasal and Transoral Approaches to the Craniovertebral Junction: A Quantitative Anatomical Study.
    Doglietto F; Belotti F; Qiu J; Roca E; Radovanovic I; Agur A; Kucharczyk W; Schreiber A; Villaret AB; Nicolai P; Gentili F; Fontanella MM
    Acta Neurochir Suppl; 2019; 125():37-44. PubMed ID: 30610300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiportal robotic access to the anterior cranial fossa: a surgical and engineering feasibility study.
    Bly RA; Su D; Lendvay TS; Friedman D; Hannaford B; Ferreira M; Moe KS
    Otolaryngol Head Neck Surg; 2013 Dec; 149(6):940-6. PubMed ID: 24154747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transoral robotic-assisted thyroidectomy: a preclinical feasibility study in 2 cadavers.
    Richmon JD; Pattani KM; Benhidjeb T; Tufano RP
    Head Neck; 2011 Mar; 33(3):330-3. PubMed ID: 20629089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward video-based navigation for endoscopic endonasal skull base surgery.
    Mirota D; Wang H; Taylor RH; Ishii M; Hager GD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):91-9. PubMed ID: 20425975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotic nasopharyngectomy via combined endonasal and transantral port: a preliminary cadaveric study.
    Cho HJ; Kang JW; Min HJ; Chung HJ; Park DY; Ha JG; Baek SH; Yoon JH; Kim CH
    Laryngoscope; 2015 Aug; 125(8):1839-43. PubMed ID: 25877334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Applicability of the da Vinci robotic system in the skull base surgical approach. Preclinical investigation].
    Fernandez-Nogueras Jimenez FJ; Segura Fernandez-Nogueras M; Jouma Katati M; Arraez Sanchez MÁ; Roda Murillo O; Sánchez Montesinos I
    Neurocirugia (Astur); 2015; 26(5):217-23. PubMed ID: 26123484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoscopic approach to the upper cervical spine and clivus: an anatomical study of the upper limits of the transoral corridor.
    La Corte E; Aldana PR
    Acta Neurochir (Wien); 2017 Apr; 159(4):633-639. PubMed ID: 28176030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transoral robotic-assisted skull base surgery to approach the sella turcica: cadaveric study.
    Chauvet D; Missistrano A; Hivelin M; Carpentier A; Cornu P; Hans S
    Neurosurg Rev; 2014 Oct; 37(4):609-17. PubMed ID: 24848406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic endoscopic surgery of the skull base: a novel surgical approach.
    Hanna EY; Holsinger C; DeMonte F; Kupferman M
    Arch Otolaryngol Head Neck Surg; 2007 Dec; 133(12):1209-14. PubMed ID: 18086961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A system for video-based navigation for endoscopic endonasal skull base surgery.
    Mirota DJ; Wang H; Taylor RH; Ishii M; Gallia GL; Hager GD
    IEEE Trans Med Imaging; 2012 Apr; 31(4):963-76. PubMed ID: 22113772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and Oblique Approaches to the Craniovertebral Junction: Nuances of Microsurgical and Endoscope-Assisted Techniques Along with a Review of the Literature.
    Visocchi M; Germano' A; Umana G; Richiello A; Raudino G; Eldella AM; Iacopino G; Barbagallo G
    Acta Neurochir Suppl; 2017; 124():107-116. PubMed ID: 28120061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transnasal endoscopic approaches to the cranial base].
    Lysoń T; Sieśkiewicz A; Rutkowski R; Kochanowicz J; Turek G; Rogowski M; Mariak Z
    Neurol Neurochir Pol; 2013; 47(1):63-73. PubMed ID: 23487296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landmark-based augmented reality system for paranasal and transnasal endoscopic surgeries.
    Thoranaghatte R; Garcia J; Caversaccio M; Widmer D; Gonzalez Ballester MA; Nolte LP; Zheng G
    Int J Med Robot; 2009 Dec; 5(4):415-22. PubMed ID: 19623600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transoral Approach to the Craniovertebral Junction: A Neuronavigated Cadaver Study.
    Signorelli F; Costantini A; Stumpo V; Conforti G; Olivi A; Visocchi M
    Acta Neurochir Suppl; 2019; 125():51-55. PubMed ID: 30610302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vision-based navigation in image-guided interventions.
    Mirota DJ; Ishii M; Hager GD
    Annu Rev Biomed Eng; 2011 Aug; 13():297-319. PubMed ID: 21568713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.