BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 23444374)

  • 41. Structural basis and evolutionary origin of actin filament capping by twinfilin.
    Paavilainen VO; Hellman M; Helfer E; Bovellan M; Annila A; Carlier MF; Permi P; Lappalainen P
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3113-8. PubMed ID: 17360616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth.
    Vidali L; van Gisbergen PA; Guérin C; Franco P; Li M; Burkart GM; Augustine RC; Blanchoin L; Bezanilla M
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13341-6. PubMed ID: 19633191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fifteen formins for an actin filament: a molecular view on the regulation of human formins.
    Schönichen A; Geyer M
    Biochim Biophys Acta; 2010 Feb; 1803(2):152-63. PubMed ID: 20102729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reinforcing the LINC complex connection to actin filaments: the role of FHOD1 in TAN line formation and nuclear movement.
    Antoku S; Zhu R; Kutscheidt S; Fackler OT; Gundersen GG
    Cell Cycle; 2015; 14(14):2200-5. PubMed ID: 26083340
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formin proteins: a domain-based approach.
    Higgs HN
    Trends Biochem Sci; 2005 Jun; 30(6):342-53. PubMed ID: 15950879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formin leaky cap allows elongation in the presence of tight capping proteins.
    Zigmond SH; Evangelista M; Boone C; Yang C; Dar AC; Sicheri F; Forkey J; Pring M
    Curr Biol; 2003 Oct; 13(20):1820-3. PubMed ID: 14561409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner.
    Yokota E; Tominaga M; Mabuchi I; Tsuji Y; Staiger CJ; Oiwa K; Shimmen T
    Plant Cell Physiol; 2005 Oct; 46(10):1690-703. PubMed ID: 16100394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin.
    Mizuno H; Tanaka K; Yamashiro S; Narita A; Watanabe N
    Proc Natl Acad Sci U S A; 2018 May; 115(22):E5000-E5007. PubMed ID: 29760064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Src regulates the activity of the mammalian formin protein FHOD1.
    Koka S; Minick GT; Zhou Y; Westendorf JJ; Boehm MB
    Biochem Biophys Res Commun; 2005 Nov; 336(4):1285-91. PubMed ID: 16169515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments.
    Kuhlman PA; Hughes CA; Bennett V; Fowler VM
    J Biol Chem; 1996 Apr; 271(14):7986-91. PubMed ID: 8626479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Filopodia formation by crosslinking of F-actin with fascin in two different binding manners.
    Aramaki S; Mayanagi K; Jin M; Aoyama K; Yasunaga T
    Cytoskeleton (Hoboken); 2016 Jun; 73(7):365-74. PubMed ID: 27169557
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Processive Arabidopsis Formin Modulates Actin Filament Dynamics in Association with Profilin.
    Zhang S; Liu C; Wang J; Ren Z; Staiger CJ; Ren H
    Mol Plant; 2016 Jun; 9(6):900-10. PubMed ID: 26996265
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The human formin FHOD1 contains a bipartite structure of FH3 and GTPase-binding domains required for activation.
    Schulte A; Stolp B; Schönichen A; Pylypenko O; Rak A; Fackler OT; Geyer M
    Structure; 2008 Sep; 16(9):1313-23. PubMed ID: 18786395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism and function of formins in the control of actin assembly.
    Goode BL; Eck MJ
    Annu Rev Biochem; 2007; 76():593-627. PubMed ID: 17373907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytochalasin D acts as an inhibitor of the actin-cofilin interaction.
    Shoji K; Ohashi K; Sampei K; Oikawa M; Mizuno K
    Biochem Biophys Res Commun; 2012 Jul; 424(1):52-7. PubMed ID: 22728040
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization.
    Watanabe N; Tohyama K; Yamashiro S
    Biochem Biophys Res Commun; 2018 Nov; 506(2):323-329. PubMed ID: 30309655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The filamentous actin cross-linking/bundling activity of mammalian formins.
    Esue O; Harris ES; Higgs HN; Wirtz D
    J Mol Biol; 2008 Dec; 384(2):324-34. PubMed ID: 18835565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95-kdalton protein (villin): a new actin assembly assay using the Limulus acrosomal process.
    Bonder EM; Mooseker MS
    J Cell Biol; 1983 Apr; 96(4):1097-107. PubMed ID: 6682116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement.
    Kutscheidt S; Zhu R; Antoku S; Luxton GW; Stagljar I; Fackler OT; Gundersen GG
    Nat Cell Biol; 2014 Jul; 16(7):708-15. PubMed ID: 24880667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of formin-induced nucleation of actin filaments.
    Pring M; Evangelista M; Boone C; Yang C; Zigmond SH
    Biochemistry; 2003 Jan; 42(2):486-96. PubMed ID: 12525176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.