These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 234445)

  • 1. The effect of functional differences in the alpha and beta chains on the cooperativity of the osidation reduction reaction of hemoglobin.
    Edelstein SJ; Gibson WH
    J Biol Chem; 1975 Feb; 250(3):961-5. PubMed ID: 234445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation and spin state in methemoglobin.
    Hensley P; Edelstein SJ; Wharton DC; Gibson QH
    J Biol Chem; 1975 Feb; 250(3):952-60. PubMed ID: 234444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear relaxation studies on human methemoglobin. Observation of cooperativity and alkaline Bohr effect with inositol hexaphosphate.
    Gupta RK; Mildvan AS
    J Biol Chem; 1975 Jan; 250(1):246-53. PubMed ID: 237888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of cooperativity in hemoglobin. Valency hybrids, oxidation, and methemoglobin replacement reactions.
    Szabo A; Karplus M
    Biochemistry; 1975 Mar; 14(5):931-40. PubMed ID: 235946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation-reduction reactions of hemoglobin A, hemoglobin M Iwate, and hemoglobin M Hyde Park.
    Yamada T; Marini CP; Cassatt JC
    Biochemistry; 1978 Jan; 17(2):231-6. PubMed ID: 619989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR studies of the quaternary structure and heterogeneity of nitrosyl- and methemoglobin.
    Huang TH
    J Biol Chem; 1979 Nov; 254(22):11467-74. PubMed ID: 40982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperativity in the dissociation of nitric oxide from hemoglobin.
    Moore EG; Gibson QH
    J Biol Chem; 1976 May; 251(9):2788-94. PubMed ID: 1262343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP.
    Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T
    Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the allosteric transition between the structures of high and low ligand affinity in carp hemoglobin.
    Sharonov YA; Sharonova NA
    Biochim Biophys Acta; 1976 Oct; 446(2):547-53. PubMed ID: 10981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation-reduction potentials of human fetal hemoglobin and gamma chains. Effects of blocking sulfhydryl groups.
    Abraham EC; Taylor JF
    J Biol Chem; 1975 May; 250(10):3929-35. PubMed ID: 236306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen equilibria of hybrid-heme hemoglobins containing proto- and mesoheme groups. On the nonequivalence of alpha and beta chains.
    Makino N; Sugita Y
    J Biol Chem; 1978 Feb; 253(4):1174-9. PubMed ID: 24050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton nuclear magnetic resonance and biochemical studies of oxygenation of human adult hemoglobin in deuterium oxide.
    Viggiano G; Ho NT; Ho C
    Biochemistry; 1979 Nov; 18(23):5238-47. PubMed ID: 497180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox potentials of normal and SH(beta 93)-modified human hemoglobin. Effect of pH and D-glycerate 2,3-bisphosphate.
    Santucci R; Ascoli F; Antonini E
    Biochim Biophys Acta; 1984 Aug; 789(1):20-5. PubMed ID: 6466687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-equivalence of human hemoglobin chains in the oxidation-reduction and heme-transfer reactions. A 13C nuclear-Magnetic-resonance study.
    Banerjee R; Lhoste JM
    Eur J Biochem; 1976 Aug; 67(2):349-56. PubMed ID: 964247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of inositol hexaphosphate on the allosteric properties of two beta-99-substituted abnormal hemoglobins, hemoglobin Yakima and hemoglobin Kempsey.
    Nagai M; Nishibu M; Sugita Y; Yoneyama Y
    J Biol Chem; 1975 Apr; 250(8):3169-73. PubMed ID: 235541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of pH and inositol hexaphosphate on the spectroscopic properties of the alpha and beta subunits in methemoglobins M Milwaukee and A.
    John ME; Waterman MR
    Biochim Biophys Acta; 1979 Jun; 578(2):269-80. PubMed ID: 39622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton nuclear magnetic resonance studies of hemoglobin M Milwaukee and their implications concerning the mechanism of cooperative oxygenation of hemoglobin.
    Fung LW; Minton AP; Lindstrom TR; Pisciotta AV; Ho C
    Biochemistry; 1977 Apr; 16(7):1452-62. PubMed ID: 849426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear relaxation and gelation study of the interaction of organophosphates with human normal and sickle hemoglobins. In vitro gelation of sickle oxyhemoglobin in the presence of inositol hexaphosphate.
    Gupta RK
    J Biol Chem; 1976 Nov; 251(21):6815-22. PubMed ID: 977598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-association of hemoglobin betaSH chains is linked to oxygenation.
    Valdes R; Ackers GK
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):311-4. PubMed ID: 24215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational aspects of the interaction of polyanions with liganded beta chains of human hemoglobin.
    Salahuddin A; Bucci E
    Biochemistry; 1976 Aug; 15(16):3399-405. PubMed ID: 952864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.