These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 23444996)

  • 21. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation.
    Bleiziffer P; Hesselmann A; Görling A
    J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-range correlation energy calculated from coupled atomic response functions.
    Ambrosetti A; Reilly AM; DiStasio RA; Tkatchenko A
    J Chem Phys; 2014 May; 140(18):18A508. PubMed ID: 24832316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tension between predicting accurate ground state correlation energies and excitation energies from adiabatic approximations in TDDFT.
    Everhart LM; Derteano JA; Bates JE
    J Chem Phys; 2022 Feb; 156(8):084116. PubMed ID: 35232189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.
    Mussard B; Rocca D; Jansen G; Ángyán JG
    J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation.
    Lebègue S; Harl J; Gould T; Angyán JG; Kresse G; Dobson JF
    Phys Rev Lett; 2010 Nov; 105(19):196401. PubMed ID: 21231187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the exchange-hole model of London dispersion forces.
    Angyán JG
    J Chem Phys; 2007 Jul; 127(2):024108. PubMed ID: 17640120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A post-Hartree-Fock model of intermolecular interactions.
    Johnson ER; Becke AD
    J Chem Phys; 2005 Jul; 123(2):24101. PubMed ID: 16050735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications.
    Hermann J; DiStasio RA; Tkatchenko A
    Chem Rev; 2017 Mar; 117(6):4714-4758. PubMed ID: 28272886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Power series expansion of the random phase approximation correlation energy: The role of the third- and higher-order contributions.
    Lu D; Nguyen HV; Galli G
    J Chem Phys; 2010 Oct; 133(15):154110. PubMed ID: 20969373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation.
    Toulouse J; Gerber IC; Jansen G; Savin A; Angyán JG
    Phys Rev Lett; 2009 Mar; 102(9):096404. PubMed ID: 19392541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Random-phase-approximation-based correlation energy functionals: benchmark results for atoms.
    Jiang H; Engel E
    J Chem Phys; 2007 Nov; 127(18):184108. PubMed ID: 18020631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate theoretical chemistry with coupled pair models.
    Neese F; Hansen A; Wennmohs F; Grimme S
    Acc Chem Res; 2009 May; 42(5):641-8. PubMed ID: 19296607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of model exchange-correlation kernels in the adiabatic connection fluctuation-dissipation theorem for inhomogeneous systems.
    Lu D
    J Chem Phys; 2014 May; 140(18):18A520. PubMed ID: 24832328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model.
    Curutchet C; Orozco M; Luque FJ; Mennucci B; Tomasi J
    J Comput Chem; 2006 Nov; 27(15):1769-80. PubMed ID: 16917857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does DFT-D estimate accurate energies for the binding of ligands to metal complexes?
    Ryde U; Mata RA; Grimme S
    Dalton Trans; 2011 Nov; 40(42):11176-83. PubMed ID: 21853206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation.
    Sato T; Nakai H
    J Chem Phys; 2009 Dec; 131(22):224104. PubMed ID: 20001021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.