These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23445187)

  • 1. Cobalt corrole catalyst for efficient hydrogen evolution reaction from H2O under ambient conditions: reactivity, spectroscopy, and density functional theory calculations.
    Mondal B; Sengupta K; Rana A; Mahammed A; Botoshansky M; Dey SG; Gross Z; Dey A
    Inorg Chem; 2013 Mar; 52(6):3381-7. PubMed ID: 23445187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.
    Zee DZ; Chantarojsiri T; Long JR; Chang CJ
    Acc Chem Res; 2015 Jul; 48(7):2027-36. PubMed ID: 26101803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production.
    Lei H; Han A; Li F; Zhang M; Han Y; Du P; Lai W; Cao R
    Phys Chem Chem Phys; 2014 Feb; 16(5):1883-93. PubMed ID: 24327074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex.
    Lewandowska-Andralojc A; Baine T; Zhao X; Muckerman JT; Fujita E; Polyansky DE
    Inorg Chem; 2015 May; 54(9):4310-21. PubMed ID: 25902004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ligand modification and protonation on metal oxime hydrogen evolution electrocatalysts.
    Solis BH; Yu Y; Hammes-Schiffer S
    Inorg Chem; 2013 Jun; 52(12):6994-9. PubMed ID: 23701462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the mechanism of hydrogen evolution by cobalt(diimine-dioxime) catalysts.
    Bhattacharjee A; Andreiadis ES; Chavarot-Kerlidou M; Fontecave M; Field MJ; Artero V
    Chemistry; 2013 Nov; 19(45):15166-74. PubMed ID: 24105795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of cobalt(II) porphyrin-catalyzed C-H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates.
    Lyaskovskyy V; Suarez AI; Lu H; Jiang H; Zhang XP; de Bruin B
    J Am Chem Soc; 2011 Aug; 133(31):12264-73. PubMed ID: 21711027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.
    del Rosal I; Maron L; Poteau R; Jolibois F
    Dalton Trans; 2008 Aug; (30):3959-70. PubMed ID: 18648699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cobalt complex with a bioinspired molybdopterin-like ligand: a catalyst for hydrogen evolution.
    Fogeron T; Porcher JP; Gomez-Mingot M; Todorova TK; Chamoreau LM; Mellot-Draznieks C; Li Y; Fontecave M
    Dalton Trans; 2016 Oct; 45(37):14754-63. PubMed ID: 27426738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes.
    Solis BH; Hammes-Schiffer S
    Inorg Chem; 2011 Nov; 50(21):11252-62. PubMed ID: 21942543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction.
    Wang DY; Gong M; Chou HL; Pan CJ; Chen HA; Wu Y; Lin MC; Guan M; Yang J; Chen CW; Wang YL; Hwang BJ; Chen CC; Dai H
    J Am Chem Soc; 2015 Feb; 137(4):1587-92. PubMed ID: 25588180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient photocatalytic hydrogen production in water using a cobalt(III) tetraaza-macrocyclic catalyst: electrochemical generation of the low-valent Co(I) species and its reactivity toward proton reduction.
    Varma S; Castillo CE; Stoll T; Fortage J; Blackman AG; Molton F; Deronzier A; Collomb MN
    Phys Chem Chem Phys; 2013 Oct; 15(40):17544-52. PubMed ID: 24030544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt(IV) corroles as catalysts for the electroreduction of O2: reactions of heterobimetallic dyads containing a face-to-face linked Fe(III) or Mn(III) porphyrin.
    Kadish KM; Frémond L; Burdet F; Barbe JM; Gros CP; Guilard R
    J Inorg Biochem; 2006 Apr; 100(4):858-68. PubMed ID: 16516296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media.
    Baffert C; Artero V; Fontecave M
    Inorg Chem; 2007 Mar; 46(5):1817-24. PubMed ID: 17269760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study of anomalous reduction potentials for hydrogen evolution catalyzed by cobalt dithiolene complexes.
    Solis BH; Hammes-Schiffer S
    J Am Chem Soc; 2012 Sep; 134(37):15253-6. PubMed ID: 22954257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, spectroscopic and redox properties of a mononuclear Co(II) thiolate complex--the reactivity toward S-alkylation: an experimental and theoretical study.
    Gennari M; Gerey B; Hall N; Pécaut J; Vezin H; Collomb MN; Orio M; Duboc C
    Dalton Trans; 2012 Oct; 41(40):12586-94. PubMed ID: 22960784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction.
    Seo B; Jung GY; Sa YJ; Jeong HY; Cheon JY; Lee JH; Kim HY; Kim JC; Shin HS; Kwak SK; Joo SH
    ACS Nano; 2015 Apr; 9(4):3728-39. PubMed ID: 25794552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Rh(III)(dmbpy)2Cl2]+ as a highly efficient catalyst for visible-light-driven hydrogen production in pure water: comparison with other rhodium catalysts.
    Stoll T; Gennari M; Serrano I; Fortage J; Chauvin J; Odobel F; Rebarz M; Poizat O; Sliwa M; Deronzier A; Collomb MN
    Chemistry; 2013 Jan; 19(2):782-92. PubMed ID: 23169449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.