These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23445392)
1. Lodgepole Pine Cambium (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats.): a springtime first peoples' food in British Columbia. Dilbone M; Turner NJ; von Aderkas P Ecol Food Nutr; 2013; 52(2):130-47. PubMed ID: 23445392 [TBL] [Abstract][Full Text] [Related]
2. Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. Godbout J; Fazekas A; Newton CH; Yeh FC; Bousquet J Mol Ecol; 2008 May; 17(10):2463-75. PubMed ID: 18430147 [TBL] [Abstract][Full Text] [Related]
3. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity. Andrews SF; Flanagan LB; Sharp EJ; Cai T Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220 [TBL] [Abstract][Full Text] [Related]
4. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts. Goodsman DW; Erbilgin N; Lieffers VJ Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605 [TBL] [Abstract][Full Text] [Related]
5. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins. Clark EL; Huber DP; Carroll AL Environ Entomol; 2012 Apr; 41(2):392-8. PubMed ID: 22507014 [TBL] [Abstract][Full Text] [Related]
6. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera. Arango-Velez A; González LM; Meents MJ; El Kayal W; Cooke BJ; Linsky J; Lusebrink I; Cooke JE Tree Physiol; 2014 Nov; 34(11):1220-39. PubMed ID: 24319029 [TBL] [Abstract][Full Text] [Related]
7. Comparing the impacts of mitigation and non-mitigation on mountain pine beetle populations. Coggins SB; Coops NC; Wulder MA; Bater CW; Ortlepp SM J Environ Manage; 2011 Jan; 92(1):112-20. PubMed ID: 20855146 [TBL] [Abstract][Full Text] [Related]
8. Growth-climate relationships vary with height along the stem in lodgepole pine. Chhin S; Hogg EH; Lieffers VJ; Huang S Tree Physiol; 2010 Mar; 30(3):335-45. PubMed ID: 20067911 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression. Cullingham CI; James PM; Cooke JE; Coltman DW Evol Appl; 2012 Dec; 5(8):879-91. PubMed ID: 23346232 [TBL] [Abstract][Full Text] [Related]
10. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire. Arbellay E; Daniels LD; Mansfield SD; Chang AS Tree Physiol; 2017 Dec; 37(12):1611-1621. PubMed ID: 29121262 [TBL] [Abstract][Full Text] [Related]
11. Viability of forest floor and canopy seed banks in Pinus contorta var. latifolia (Pinaceae) forests after a mountain pine beetle outbreak. Teste FP; Lieffers VJ; Landhäusser SM Am J Bot; 2011 Apr; 98(4):630-7. PubMed ID: 21613163 [TBL] [Abstract][Full Text] [Related]
12. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from central British Columbia. Wallis CM; Huber DP; Lewis KJ J Chem Ecol; 2011 Jun; 37(6):607-21. PubMed ID: 21537900 [TBL] [Abstract][Full Text] [Related]
13. Diversity and decay ability of basidiomycetes isolated from lodgepole pines killed by the mountain pine beetle. Son E; Kim JJ; Lim YW; Au-Yeung TT; Yang CY; Breuil C Can J Microbiol; 2011 Jan; 57(1):33-41. PubMed ID: 21217795 [TBL] [Abstract][Full Text] [Related]
14. Growth response and sapwood hydraulic properties of young lodgepole pine following repeated fertilization. Amponsah IG; Lieffers VJ; Comeau PG; Brockley RP Tree Physiol; 2004 Oct; 24(10):1099-108. PubMed ID: 15294756 [TBL] [Abstract][Full Text] [Related]
15. To live fast or not: growth, vigor and longevity of old-growth ponderosa pine and lodgepole pine trees. Kaufmann MR Tree Physiol; 1996; 16(1_2):139-144. PubMed ID: 14871757 [TBL] [Abstract][Full Text] [Related]
16. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana). Cullingham CI; Cooke JE; Coltman DW Genome; 2013 Oct; 56(10):577-85. PubMed ID: 24237338 [TBL] [Abstract][Full Text] [Related]
17. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine. Cappa EP; Chen C; Klutsch JG; Sebastian-Azcona J; Ratcliffe B; Wei X; Da Ros L; Ullah A; Liu Y; Benowicz A; Sadoway S; Mansfield SD; Erbilgin N; Thomas BR; El-Kassaby YA BMC Genomics; 2022 Jul; 23(1):536. PubMed ID: 35870886 [TBL] [Abstract][Full Text] [Related]
18. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia. Kuznetsova T; Tilk M; Pärn H; Lukjanova A; Mandre M Environ Monit Assess; 2011 Dec; 183(1-4):341-50. PubMed ID: 21374054 [TBL] [Abstract][Full Text] [Related]
19. Suitability of live and fire-killed small-diameter ponderosa and lodgepole pine trees for manufacturing a new structural wood composite. Linton JM; Barnes HM; Seale RD; Jones PD; Lowell EC; Hummel SS Bioresour Technol; 2010 Aug; 101(15):6242-7. PubMed ID: 20378344 [TBL] [Abstract][Full Text] [Related]
20. Aboveground production and N and P use by Larix occidentalis and Pinus contorta in the Washington Cascades, USA. Gower ST; Grier CC; Vogt KA Tree Physiol; 1989 Mar; 5(1):1-11. PubMed ID: 14972994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]