BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23446044)

  • 1. Comparison of Kasai autocorrelation and maximum likelihood estimators for Doppler optical coherence tomography.
    Chan AC; Lam EY; Srinivasan VJ
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1033-42. PubMed ID: 23446044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum likelihood Doppler frequency estimation under decorrelation noise for quantifying flow in optical coherence tomography.
    Chan AC; Srinivasan VJ; Lam EY
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1313-23. PubMed ID: 24760902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography.
    Uribe-Patarroyo N; Villiger M; Bouma BE
    Opt Express; 2014 Oct; 22(20):24411-29. PubMed ID: 25322018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Ultrafast Power Doppler Imaging with High Signal-to-Noise Ratio by Temporal Multiply-and-Sum (TMAS) Autocorrelation.
    Shen CC; Guo FT
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator.
    Morofke D; Kolios MC; Vitkin IA; Yang VX
    Opt Lett; 2007 Feb; 32(3):253-5. PubMed ID: 17215936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal velocity estimation in ultrasound color flow imaging in presence of clutter.
    Løvstakken L; Bjaerum S; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):539-49. PubMed ID: 17375823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.
    Herment A; Giovannelli JF
    Ultrason Imaging; 1995 Jan; 17(1):1-26. PubMed ID: 7638930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance analysis of optical coherence tomography in the context of a thickness estimation task.
    Huang J; Yao J; Cirucci N; Ivanov T; Rolland JP
    J Biomed Opt; 2015 Dec; 20(12):121306. PubMed ID: 26378988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New estimators and guidelines for better use of fetal heart rate estimators with Doppler ultrasound devices.
    Voicu I; Ménigot S; Kouamé D; Girault JM
    Comput Math Methods Med; 2014; 2014():784862. PubMed ID: 24624224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.
    Sudeep PV; Issac Niwas S; Palanisamy P; Rajan J; Xiaojun Y; Wang X; Luo Y; Liu L
    Comput Biol Med; 2016 Apr; 71():97-107. PubMed ID: 26907572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimator for photon counting energy selective x-ray imaging with multibin pulse height analysis.
    Alvarez RE
    Med Phys; 2011 May; 38(5):2324-34. PubMed ID: 21776766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error analysis of ultrasonic tissue doppler velocity estimation techniques for quantification of velocity and strain.
    Bennett MJ; McLaughlin S; Anderson T; McDicken WN
    Ultrasound Med Biol; 2007 Jan; 33(1):74-81. PubMed ID: 17189049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Necessary conditions for a maximum likelihood estimate to become asymptotically unbiased and attain the Cramer-Rao lower bound. Part I. General approach with an application to time-delay and Doppler shift estimation.
    Naftali E; Makris NC
    J Acoust Soc Am; 2001 Oct; 110(4):1917-30. PubMed ID: 11681372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum a posteriori estimator for high-contrast image composition of optical coherence tomography.
    Chan AC; Kurokawa K; Makita S; Miura M; Yasuno Y
    Opt Lett; 2016 Jan; 41(2):321-4. PubMed ID: 26766704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated noise estimation in polarization-sensitive optical coherence tomography.
    Keahey PA; Bouma BE; Villiger M
    Opt Lett; 2020 May; 45(10):2748-2751. PubMed ID: 32412457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography.
    Vakoc BJ; Tearney GJ; Bouma BE
    IEEE Trans Med Imaging; 2009 Jun; 28(6):814-21. PubMed ID: 19164078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doppler OCT clutter rejection using variance minimization and offset extrapolation.
    Akif A; Walek K; Polucha C; Lee J
    Biomed Opt Express; 2018 Nov; 9(11):5340-5352. PubMed ID: 30460132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiframe denoising of high-speed optical coherence tomography data using interframe and intraframe priors.
    Bian L; Suo J; Chen F; Dai Q
    J Biomed Opt; 2015 Mar; 20(3):036006. PubMed ID: 25751163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new wideband spread target maximum likelihood estimator for blood velocity estimation. I. Theory.
    Ferrara KW; Algazi VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):1-16. PubMed ID: 18267551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral estimators in elastography.
    Konofagou EE; Varghese T; Ophir J
    Ultrasonics; 2000 Mar; 38(1-8):412-6. PubMed ID: 10829698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.