These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23446278)

  • 1. RNA-templated DNA origami structures.
    Endo M; Yamamoto S; Tatsumi K; Emura T; Hidaka K; Sugiyama H
    Chem Commun (Camb); 2013 Apr; 49(28):2879-81. PubMed ID: 23446278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of chemically modified RNA origami nanostructures.
    Endo M; Takeuchi Y; Emura T; Hidaka K; Sugiyama H
    Chemistry; 2014 Nov; 20(47):15330-3. PubMed ID: 25313942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands.
    Wang P; Ko SH; Tian C; Hao C; Mao C
    Chem Commun (Camb); 2013 Jun; 49(48):5462-4. PubMed ID: 23660602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA prism structures constructed by folding of multiple rectangular arms.
    Endo M; Hidaka K; Kato T; Namba K; Sugiyama H
    J Am Chem Soc; 2009 Nov; 131(43):15570-1. PubMed ID: 19824672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isothermal assembly of DNA origami structures using denaturing agents.
    Jungmann R; Liedl T; Sobey TL; Shih W; Simmel FC
    J Am Chem Soc; 2008 Aug; 130(31):10062-3. PubMed ID: 18613687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami metallized site specifically to form electrically conductive nanowires.
    Pearson AC; Liu J; Pound E; Uprety B; Woolley AT; Davis RC; Harb JN
    J Phys Chem B; 2012 Sep; 116(35):10551-60. PubMed ID: 22578334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallization of branched DNA origami for nanoelectronic circuit fabrication.
    Liu J; Geng Y; Pound E; Gyawali S; Ashton JR; Hickey J; Woolley AT; Harb JN
    ACS Nano; 2011 Mar; 5(3):2240-7. PubMed ID: 21323323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of DNA origami for molecular self-assembly.
    Saaem I; LaBean TH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):150-62. PubMed ID: 23335504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and self-folding of amphiphilic DNA origami.
    Zhou C; Wang D; Dong Y; Xin L; Sun Y; Yang Z; Liu D
    Small; 2015 Mar; 11(9-10):1161-4. PubMed ID: 25087844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR studies of fully modified locked nucleic acid (LNA) hybrids: solution structure of an LNA:RNA hybrid and characterization of an LNA:DNA hybrid.
    Nielsen KE; Rasmussen J; Kumar R; Wengel J; Jacobsen JP; Petersen M
    Bioconjug Chem; 2004; 15(3):449-57. PubMed ID: 15149171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA origami-based nanoribbons: assembly, length distribution, and twist.
    Jungmann R; Scheible M; Kuzyk A; Pardatscher G; Castro CE; Simmel FC
    Nanotechnology; 2011 Jul; 22(27):275301. PubMed ID: 21597145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of DNA:DNA and DNA:RNA duplexes containing 5-(N-aminohexyl)carbamoyl-modified uracils reveal the basis for properties as antigene and antisense molecules.
    Juan EC; Kondo J; Kurihara T; Ito T; Ueno Y; Matsuda A; Takénaka A
    Nucleic Acids Res; 2007; 35(6):1969-77. PubMed ID: 17341465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helical DNA origami tubular structures with various sizes and arrangements.
    Endo M; Yamamoto S; Emura T; Hidaka K; Morone N; Heuser JE; Sugiyama H
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7484-90. PubMed ID: 24888699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the thermal behavior of DNA origami nanostructures.
    Wei X; Nangreave J; Jiang S; Yan H; Liu Y
    J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of RNA and DNA template structures during transcript elongation by RNA polymerases.
    Sastry SS; Hoffman PL
    Biochem Biophys Res Commun; 1995 Jun; 211(1):106-14. PubMed ID: 7540001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA origami templated self-assembly of discrete length single wall carbon nanotubes.
    Zhao Z; Liu Y; Yan H
    Org Biomol Chem; 2013 Jan; 11(4):596-8. PubMed ID: 23208726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold.
    Marchi AN; Saaem I; Tian J; LaBean TH
    ACS Nano; 2013 Feb; 7(2):903-10. PubMed ID: 23281627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA origami: fold, stick, and beyond.
    Kuzuya A; Komiyama M
    Nanoscale; 2010 Mar; 2(3):310-22. PubMed ID: 20644813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct visualization of transient thermal response of a DNA origami.
    Song J; Arbona JM; Zhang Z; Liu L; Xie E; Elezgaray J; Aime JP; Gothelf KV; Besenbacher F; Dong M
    J Am Chem Soc; 2012 Jun; 134(24):9844-7. PubMed ID: 22646845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.