These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23446310)

  • 1. Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites.
    Wang J; Yu Y; Gu L; Wang C; Tang K; Maier J
    Nanoscale; 2013 Apr; 5(7):2647-50. PubMed ID: 23446310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell Ti@Si coaxial nanorod arrays formed directly on current collectors for lithium-ion batteries.
    Meng X; Deng D
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6867-74. PubMed ID: 25749298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries.
    Tao H; Fan LZ; Song WL; Wu M; He X; Qu X
    Nanoscale; 2014 Mar; 6(6):3138-42. PubMed ID: 24496138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of Ge@C core-shell nanocomposites for high-performance lithium storage in lithium-ion batteries.
    Wang Y; Wang G
    Chem Asian J; 2013 Dec; 8(12):3142-6. PubMed ID: 24006143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxial Electrospinning Construction Si@C Core-Shell Nanofibers for Advanced Flexible Lithium-Ion Batteries.
    Zeng L; Xi H; Liu X; Zhang C
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes.
    Kong J; Yee WA; Wei Y; Yang L; Ang JM; Phua SL; Wong SY; Zhou R; Dong Y; Li X; Lu X
    Nanoscale; 2013 Apr; 5(7):2967-73. PubMed ID: 23455391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Fabrication of Core-Shell Structured C/SnO
    Cheng Y; Li Q; Wang C; Sun L; Yi Z; Wang L
    Small; 2017 Dec; 13(47):. PubMed ID: 29058829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode.
    Jeong G; Kim JG; Park MS; Seo M; Hwang SM; Kim YU; Kim YJ; Kim JH; Dou SX
    ACS Nano; 2014 Mar; 8(3):2977-85. PubMed ID: 24552160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior.
    Cheng J; Wang B; Park CM; Wu Y; Huang H; Nie F
    Chemistry; 2013 Jul; 19(30):9866-74. PubMed ID: 23852958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.
    Jia H; Stock C; Kloepsch R; He X; Badillo JP; Fromm O; Vortmann B; Winter M; Placke T
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1508-15. PubMed ID: 25574763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material.
    Gao P; Fu J; Yang J; Lv R; Wang J; Nuli Y; Tang X
    Phys Chem Chem Phys; 2009 Dec; 11(47):11101-5. PubMed ID: 20024376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
    Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y
    Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage.
    Zhang J; Wang K; Xu Q; Zhou Y; Cheng F; Guo S
    ACS Nano; 2015 Mar; 9(3):3369-76. PubMed ID: 25716070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries.
    Qiao L; Wang X; Qiao L; Sun X; Li X; Zheng Y; He D
    Nanoscale; 2013 Apr; 5(7):3037-42. PubMed ID: 23462740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Hollow Porous Fe
    Qi C; Zhao M; Fang T; Zhu Y; Wang P; Xie A; Shen Y
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries.
    Liu J; Tang K; Song K; van Aken PA; Yu Y; Maier J
    Phys Chem Chem Phys; 2013 Dec; 15(48):20813-8. PubMed ID: 24202186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery.
    Lee BS; Yang HS; Jung H; Jeon SY; Jung C; Kim SW; Bae J; Choong CL; Im J; Chung UI; Park JJ; Yu WR
    Nanoscale; 2014 Jun; 6(11):5989-98. PubMed ID: 24777437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.