These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 23446345)
1. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nielsen M; Alberico E; Baumann W; Drexler HJ; Junge H; Gladiali S; Beller M Nature; 2013 Mar; 495(7439):85-9. PubMed ID: 23446345 [TBL] [Abstract][Full Text] [Related]
2. Low-Temperature Methanol-Water Reforming Over Alcohol Dehydrogenase and Immobilized Ruthenium Complex. Shen Y; Wang L; Xu Z; Ning F; Zhan Y; Bai C; Zhou X ChemSusChem; 2021 Sep; 14(18):3867-3875. PubMed ID: 34310047 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review. Lakhtaria P; Ribeirinha P; Huhtinen W; Viik S; Sousa J; Mendes A Open Res Eur; 2021; 1():81. PubMed ID: 37645145 [TBL] [Abstract][Full Text] [Related]
4. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Lin L; Zhou W; Gao R; Yao S; Zhang X; Xu W; Zheng S; Jiang Z; Yu Q; Li YW; Shi C; Wen XD; Ma D Nature; 2017 Apr; 544(7648):80-83. PubMed ID: 28329760 [TBL] [Abstract][Full Text] [Related]
5. Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature. Sordakis K; Tsurusaki A; Iguchi M; Kawanami H; Himeda Y; Laurenczy G Chemistry; 2016 Oct; 22(44):15605-15608. PubMed ID: 27582027 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Cortright RD; Davda RR; Dumesic JA Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544 [TBL] [Abstract][Full Text] [Related]
7. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Yu KM; Tong W; West A; Cheung K; Li T; Smith G; Guo Y; Tsang SC Nat Commun; 2012; 3():1230. PubMed ID: 23187630 [TBL] [Abstract][Full Text] [Related]
8. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
9. Bioinduced Room-Temperature Methanol Reforming. Heim LE; Thiel D; Gedig C; Deska J; Prechtl MH Angew Chem Int Ed Engl; 2015 Aug; 54(35):10308-12. PubMed ID: 26179443 [TBL] [Abstract][Full Text] [Related]
10. Methanol-Water Aqueous-Phase Reforming with the Assistance of Dehydrogenases at Near-Room Temperature. Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X ChemSusChem; 2018 Mar; 11(5):864-871. PubMed ID: 29327513 [TBL] [Abstract][Full Text] [Related]
11. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts. Kaithal A; Chatterjee B; Werlé C; Leitner W Angew Chem Int Ed Engl; 2021 Dec; 60(51):26500-26505. PubMed ID: 34596302 [TBL] [Abstract][Full Text] [Related]
12. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Alberico E; Sponholz P; Cordes C; Nielsen M; Drexler HJ; Baumann W; Junge H; Beller M Angew Chem Int Ed Engl; 2013 Dec; 52(52):14162-6. PubMed ID: 24339396 [TBL] [Abstract][Full Text] [Related]
13. Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology. Iulianelli A; Ghasemzadeh K; Basile A Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30126137 [TBL] [Abstract][Full Text] [Related]
14. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. Rodríguez-Lugo RE; Trincado M; Vogt M; Tewes F; Santiso-Quinones G; Grützmacher H Nat Chem; 2013 Apr; 5(4):342-7. PubMed ID: 23511424 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen generation from methanol at near-room temperature. Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X Chem Sci; 2017 Nov; 8(11):7498-7504. PubMed ID: 29163903 [TBL] [Abstract][Full Text] [Related]
16. Recent progress in molecular transition metal catalysts for hydrogen production from methanol and formaldehyde. Parthiban J; Awasthi MK; Kharde TA; Kalita K; Singh SK Dalton Trans; 2024 Mar; 53(10):4363-4389. PubMed ID: 38349644 [TBL] [Abstract][Full Text] [Related]
17. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Shan J; Li M; Allard LF; Lee S; Flytzani-Stephanopoulos M Nature; 2017 Nov; 551(7682):605-608. PubMed ID: 29189776 [TBL] [Abstract][Full Text] [Related]
18. Room temperature stable CO Liu Z; Yin Z; Cox C; Bosman M; Qian X; Li N; Zhao H; Du Y; Li J; Nocera DG Sci Adv; 2016 Sep; 2(9):e1501425. PubMed ID: 28508036 [TBL] [Abstract][Full Text] [Related]
19. An investigation of synthetic fuel production via chemical looping. Zeman F; Castaldi M Environ Sci Technol; 2008 Apr; 42(8):2723-7. PubMed ID: 18497114 [TBL] [Abstract][Full Text] [Related]
20. A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Andérez-Fernández M; Vogt LK; Fischer S; Zhou W; Jiao H; Garbe M; Elangovan S; Junge K; Junge H; Ludwig R; Beller M Angew Chem Int Ed Engl; 2017 Jan; 56(2):559-562. PubMed ID: 27910197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]