BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 234465)

  • 1. Factors affecting the reassociation and reactivation of the half-molecular weight nonidentical subunits of pigeon liver fatty acid synthetase.
    Muesing RA; Lornitzo FA; Kumar S; Porter JW
    J Biol Chem; 1975 Mar; 250(5):1814-23. PubMed ID: 234465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunits of fatty acid synthetase complexes. Enzymatic activities and properties of the half-molecular weight nonidentical subunits of pigeon liver fatty acid synthetase.
    Lornitzo FA; Qureshi AA; Porter JW
    J Biol Chem; 1975 Jun; 250(12):4520-9. PubMed ID: 237903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced nicotinamide adenine dinucleotide phosphate, a structural and conformational probe of chicken liver fatty acid synthetase.
    Srinivasan KR; Kumar S
    J Biol Chem; 1976 Sep; 251(17):5352-60. PubMed ID: 8463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the reactivity of the essential sulfhydryl groups as a conformational probe for the fatty acid synthetase of chicken liver. Inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid) and intersubunit cross-linking of the inactivated enzyme.
    Tian WX; Hsu RY; Wang YS
    J Biol Chem; 1985 Sep; 260(20):11375-87. PubMed ID: 4030792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of acyl/alkyl dihydroxyacetone-phosphate reductase from guinea pig liver peroxisomes.
    Datta SC; Ghosh MK; Hajra AK
    J Biol Chem; 1990 May; 265(14):8268-74. PubMed ID: 2335525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of reduced nicotinamide adenine dinucleotide phosphate, its structural analogues, and coenzyme A and its derivatives on the rate of dissociation, conformation, and enzyme activity of the pigeon liver fatty acid synthetase complex.
    Kumar S; Porter JW
    J Biol Chem; 1971 Dec; 246(24):7780-9. PubMed ID: 4400079
    [No Abstract]   [Full Text] [Related]  

  • 7. Conformational changes, inactivation, and dissociation of pigeon liver fatty acid synthetase complex. Effects of ionic strength, pH, and temperature.
    Kumar S; Muesing RA; Porter JW
    J Biol Chem; 1972 Aug; 247(15):4749-62. PubMed ID: 5065950
    [No Abstract]   [Full Text] [Related]  

  • 8. One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose.
    Buckner JS; Kolattukudy PE
    Biochemistry; 1976 May; 15(9):1948-57. PubMed ID: 817736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of enzymatic activities and aggregation state in chicken liver fatty acid synthase.
    Kashem MA; Hammes GG
    Biochim Biophys Acta; 1988 Aug; 956(1):39-48. PubMed ID: 3408738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. APS kinase from Penicillium chrysogenum. Dissociation and reassociation of subunits as the basis of the reversible heat inactivation.
    Renosto F; Seubert PA; Knudson P; Segel IH
    J Biol Chem; 1985 Feb; 260(3):1535-44. PubMed ID: 2981860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic analysis of the estrogen receptor transformation.
    Notides AC; Hamilton DE; Auer HE
    J Biol Chem; 1975 May; 250(10):3945-50. PubMed ID: 165190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional deacylases of pigeon liver fatty acid synthetase complex.
    Kumar S
    J Biol Chem; 1975 Jul; 250(13):5150-8. PubMed ID: 238978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of dissociation of pigeon liver fatty acid synthetase complex into half-molecular weight subunits and their reassociation to enzymatically active complex.
    Kumar S; Dorsey JK; Porter JW
    Biochem Biophys Res Commun; 1970 Aug; 40(4):825-32. PubMed ID: 5495731
    [No Abstract]   [Full Text] [Related]  

  • 15. Fatty acid synthetase of chicken liver. Reversible dissociation into two nonidentical subcomplexes of similar size.
    Yun SL; Hsu RY
    J Biol Chem; 1972 May; 247(9):2689-98. PubMed ID: 4623557
    [No Abstract]   [Full Text] [Related]  

  • 16. Degradation of pigeon liver fatty acid synthetase in the absence of exogenous proteinases.
    Rabinowitz SS; Porter JW
    Biochim Biophys Acta; 1983 Apr; 744(1):76-89. PubMed ID: 6830824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The studies on the loss and recovery of the steroid binding ability of rat liver glucocorticoid receptor].
    Takada Y; Nakao K; Yana S
    Nihon Naibunpi Gakkai Zasshi; 1988 Dec; 64(12):1258-72. PubMed ID: 3248623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation and reactivation of B. megatherium phage.
    NORTHROP JH
    J Gen Physiol; 1955 Nov; 39(2):225-58. PubMed ID: 13271723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of horse-liver glutathione reductase.
    García-Alfonso C; Martínez-Galisteo E; Llobell A; Bárcena JA; López-Barea J
    Int J Biochem; 1993 Apr; 25(4):513-20. PubMed ID: 8467952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase: reduced nicotinamide adenine dinucleotide phosphate binding and formation and reduction of acetoacetyl-enzyme.
    Cognet JA; Cox BG; Hammes GG
    Biochemistry; 1983 Dec; 22(26):6281-7. PubMed ID: 6362722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.