BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23446525)

  • 1. A biogenic amine and a neuropeptide act identically: tyramine signals through calcium in Drosophila tubule stellate cells.
    Cabrero P; Richmond L; Nitabach M; Davies SA; Dow JA
    Proc Biol Sci; 2013 Apr; 280(1757):20122943. PubMed ID: 23446525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NorpA and itpr mutants reveal roles for phospholipase C and inositol (1,4,5)- trisphosphate receptor in Drosophila melanogaster renal function.
    Pollock VP; Radford JC; Pyne S; Hasan G; Dow JA; Davies SA
    J Exp Biol; 2003 Mar; 206(Pt 5):901-11. PubMed ID: 12547945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis.
    Cabrero P; Terhzaz S; Romero MF; Davies SA; Blumenthal EM; Dow JA
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14301-6. PubMed ID: 25228763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.
    Cannell E; Dornan AJ; Halberg KA; Terhzaz S; Dow JAT; Davies SA
    Peptides; 2016 Jun; 80():96-107. PubMed ID: 26896569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor.
    Terhzaz S; Cabrero P; Robben JH; Radford JC; Hudson BD; Milligan G; Dow JA; Davies SA
    PLoS One; 2012; 7(1):e29897. PubMed ID: 22253819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of chloride permeability by endogenously produced tyramine in the Drosophila Malpighian tubule.
    Blumenthal EM
    Am J Physiol Cell Physiol; 2003 Mar; 284(3):C718-28. PubMed ID: 12444020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-type specific calcium signalling in a Drosophila epithelium.
    Rosay P; Davies SA; Yu Y; Sözen MA; Kaiser K; Dow JA
    J Cell Sci; 1997 Aug; 110 ( Pt 15)():1683-92. PubMed ID: 9264456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles.
    Radford JC; Davies SA; Dow JA
    J Biol Chem; 2002 Oct; 277(41):38810-7. PubMed ID: 12163486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specialized stellate cells offer a privileged route for rapid water flux in
    Cabrero P; Terhzaz S; Dornan AJ; Ghimire S; Holmes HL; Turin DR; Romero MF; Davies SA; Dow JAT
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1779-1787. PubMed ID: 31907321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells.
    O'Donnell MJ; Rheault MR; Davies SA; Rosay P; Harvey BJ; Maddrell SH; Kaiser K; Dow JA
    Am J Physiol; 1998 Apr; 274(4):R1039-49. PubMed ID: 9575967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinin receptor is expressed in the Malpighian tubule stellate cells in the mosquito Aedes aegypti (L.): a new model needed to explain ion transport?
    Lu HL; Kersch C; Pietrantonio PV
    Insect Biochem Mol Biol; 2011 Feb; 41(2):135-40. PubMed ID: 21056665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of diuretic stimulation of an insect secretory epithelium by a cGMP-dependent protein kinase.
    Ruka KA; Miller AP; Blumenthal EM
    Am J Physiol Renal Physiol; 2013 May; 304(9):F1210-6. PubMed ID: 23445619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of multiple functional receptors for tyramine on an insect secretory epithelium.
    Zhang H; Blumenthal EM
    Sci Rep; 2017 Dec; 7(1):168. PubMed ID: 28279025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of IP3 receptor function in neuropeptide secreting neurons leads to obesity in adult Drosophila.
    Subramanian M; Jayakumar S; Richhariya S; Hasan G
    BMC Neurosci; 2013 Dec; 14():157. PubMed ID: 24350669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule.
    Sun Q; Wu Y; Jonusaite S; Pleinis JM; Humphreys JM; He H; Schellinger JN; Akella R; Stenesen D; Krämer H; Goldsmith EJ; Rodan AR
    J Am Soc Nephrol; 2018 May; 29(5):1449-1461. PubMed ID: 29602832
    [No Abstract]   [Full Text] [Related]  

  • 16. Isoform- and cell-specific function of tyrosine decarboxylase in the Drosophila Malpighian tubule.
    Blumenthal EM
    J Exp Biol; 2009 Dec; 212(Pt 23):3802-9. PubMed ID: 19915121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecdysone signaling is required for proper organization and fluid secretion of stellate cells in the Malpighian tubules of Drosophila melanogaster.
    Gautam NK; Tapadia MG
    Int J Dev Biol; 2010; 54(4):635-42. PubMed ID: 20209436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes.
    Zhang F; Zhao Y; Chao Y; Muir K; Han Z
    J Am Soc Nephrol; 2013 Feb; 24(2):209-16. PubMed ID: 23264686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of transepithelial potential oscillations in the Drosophila Malpighian tubule.
    Blumenthal EM
    J Exp Biol; 2001 Sep; 204(Pt 17):3075-84. PubMed ID: 11551995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate control of anion and cation transport in malpighian tubules of Drosophila Melanogaster.
    O'Donnell MJ; Dow JA; Huesmann GR; Tublitz NJ; Maddrell SH
    J Exp Biol; 1996 May; 199(Pt 5):1163-75. PubMed ID: 8786336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.