These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23446582)

  • 1. Usefulness of polyglycolic acid-polypropylene composite scaffolds for three-dimensional cartilage regeneration in a large-animal autograft model.
    Enjo M; Terada S; Uehara M; Itani Y; Isogai N
    Plast Reconstr Surg; 2013 Mar; 131(3):335e-342e. PubMed ID: 23446582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of nanofiber-based polyglycolic acid scaffolds for improved chondrocyte retention and in vivo bioengineered cartilage regeneration.
    Itani Y; Asamura S; Matsui M; Tabata Y; Isogai N
    Plast Reconstr Surg; 2014 Jun; 133(6):805e-813e. PubMed ID: 24867739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Comparison between Human Normal Conchal and Microtia Chondrocytes Regenerated by Tissue Engineering on Nanofiber Polyglycolic Acid Scaffolds.
    Nakao H; Jacquet RD; Shasti M; Isogai N; Murthy AS; Landis WJ
    Plast Reconstr Surg; 2017 Apr; 139(4):911e-921e. PubMed ID: 28350666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early stage foreign body reaction against biodegradable polymer scaffolds affects tissue regeneration during the autologous transplantation of tissue-engineered cartilage in the canine model.
    Asawa Y; Sakamoto T; Komura M; Watanabe M; Nishizawa S; Takazawa Y; Takato T; Hoshi K
    Cell Transplant; 2012; 21(7):1431-42. PubMed ID: 22546666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture.
    Homicz MR; Chia SH; Schumacher BL; Masuda K; Thonar EJ; Sah RL; Watson D
    Laryngoscope; 2003 Jan; 113(1):25-32. PubMed ID: 12514377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model.
    Pomerantseva I; Bichara DA; Tseng A; Cronce MJ; Cervantes TM; Kimura AM; Neville CM; Roscioli N; Vacanti JP; Randolph MA; Sundback CA
    Tissue Eng Part A; 2016 Feb; 22(3-4):197-207. PubMed ID: 26529401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cartilage tissue engineering using PHBV and PHBV/Bioglass scaffolds.
    Zhou M; Yu D
    Mol Med Rep; 2014 Jul; 10(1):508-14. PubMed ID: 24737242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of local environment, fibrin, and basic fibroblast growth factor incorporation on a canine autologous model of bioengineered cartilage tissue.
    Morotomi T; Wada M; Uehara M; Enjo M; Isogai N
    Cells Tissues Organs; 2012; 196(5):398-410. PubMed ID: 22677647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cartilage regeneration using a novel gelatin-chondroitin-hyaluronan hybrid scaffold containing bFGF-impregnated microspheres.
    Deng T; Huang S; Zhou S; He L; Jin Y
    J Microencapsul; 2007 Mar; 24(2):163-74. PubMed ID: 17454427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration.
    Xia H; Zhao D; Zhu H; Hua Y; Xiao K; Xu Y; Liu Y; Chen W; Liu Y; Zhang W; Liu W; Tang S; Cao Y; Wang X; Chen HH; Zhou G
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31704-31715. PubMed ID: 30157627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage.
    Tanaka Y; Yamaoka H; Nishizawa S; Nagata S; Ogasawara T; Asawa Y; Fujihara Y; Takato T; Hoshi K
    Biomaterials; 2010 Jun; 31(16):4506-16. PubMed ID: 20206380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis.
    Komura M; Komura H; Kanamori Y; Tanaka Y; Suzuki K; Sugiyama M; Nakahara S; Kawashima H; Hatanaka A; Hoshi K; Ikada Y; Tabata Y; Iwanaka T
    J Pediatr Surg; 2008 Dec; 43(12):2141-6. PubMed ID: 19040922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects.
    Endres M; Neumann K; Schröder SE; Vetterlein S; Morawietz L; Ringe J; Sittinger M; Kaps C
    Tissue Cell; 2007 Oct; 39(5):293-301. PubMed ID: 17688898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a composite and vascularized tracheal scaffold in the omentum for in situ tissue engineering: a canine model.
    Hamaji M; Kojima F; Koyasu S; Tsuruyama T; Komatsu T; Ikuno T; Date H; Nakamura T
    Interact Cardiovasc Thorac Surg; 2014 Sep; 19(3):357-62. PubMed ID: 24893873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering.
    Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model.
    Liu Y; Li D; Yin Z; Luo X; Liu W; Zhang W; Zhang Z; Cao Y; Liu Y; Zhou G
    Biomed Mater; 2016 Dec; 12(1):015006. PubMed ID: 27910822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Method to Induce Cartilage Regeneration with Cubic Microcartilage.
    Nishiwaki H; Fujita M; Yamauchi M; Isogai N; Tabata Y; Kusuhara H
    Cells Tissues Organs; 2017; 204(5-6):251-260. PubMed ID: 28972948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable polymer scaffolds for tissue engineering.
    Freed LE; Vunjak-Novakovic G; Biron RJ; Eagles DB; Lesnoy DC; Barlow SK; Langer R
    Biotechnology (N Y); 1994 Jul; 12(7):689-93. PubMed ID: 7764913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of polyglycolic acid rods in the regeneration of cartilage from perichondrium in rabbits.
    Ruuskanen MM; Kallioinen MJ; Kaarela OI; Laiho JA; Törmälä PO; Waris TJ
    Scand J Plast Reconstr Surg Hand Surg; 1991; 25(1):15-8. PubMed ID: 1647056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of mechanical properties of engineered cartilage in an in vivo culture for design of a biodegradable scaffold.
    Komura M; Komura H; Kanamori Y; Tanaka Y; Ohatani Y; Ishimaru T; Sugiyama M; Hoshi K; Iwanaka T
    Int J Artif Organs; 2010 Nov; 33(11):775-81. PubMed ID: 21140353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.