These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 23446639)
21. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease. Zhao X; Chen XQ; Han E; Hu Y; Paik P; Ding Z; Overman J; Lau AL; Shahmoradian SH; Chiu W; Thompson LM; Wu C; Mobley WC Proc Natl Acad Sci U S A; 2016 Sep; 113(38):E5655-64. PubMed ID: 27601642 [TBL] [Abstract][Full Text] [Related]
22. Beneficial behavioral effects of chronic cerebral dopamine neurotrophic factor (CDNF) infusion in the N171-82Q transgenic model of Huntington's disease. Stepanova P; Kumar D; Cavonius K; Korpikoski J; Sirjala J; Lindholm D; Voutilainen MH Sci Rep; 2023 Feb; 13(1):2953. PubMed ID: 36807563 [TBL] [Abstract][Full Text] [Related]
23. Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington's disease. Swarnkar S; Chen Y; Pryor WM; Shahani N; Page DT; Subramaniam S Neurobiol Dis; 2015 Oct; 82():66-77. PubMed ID: 26048156 [TBL] [Abstract][Full Text] [Related]
24. 7,8-Dihydroxyflavone leads to survival of cultured embryonic motoneurons by activating intracellular signaling pathways. Tsai T; Klausmeyer A; Conrad R; Gottschling C; Leo M; Faissner A; Wiese S Mol Cell Neurosci; 2013 Sep; 56():18-28. PubMed ID: 23500004 [TBL] [Abstract][Full Text] [Related]
25. Solid Lipid Curcumin Particles Protect Medium Spiny Neuronal Morphology, and Reduce Learning and Memory Deficits in the YAC128 Mouse Model of Huntington's Disease. Gharaibeh A; Maiti P; Culver R; Heileman S; Srinageshwar B; Story D; Spelde K; Paladugu L; Munro N; Muhn N; Kolli N; Rossignol J; Dunbar GL Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333883 [TBL] [Abstract][Full Text] [Related]
26. Increased Olfactory Bulb BDNF Expression Does Not Rescue Deficits in Olfactory Neurogenesis in the Huntington's Disease R6/2 Mouse. Smail S; Bahga D; McDole B; Guthrie K Chem Senses; 2016 Mar; 41(3):221-32. PubMed ID: 26783111 [TBL] [Abstract][Full Text] [Related]
27. Beneficial effects of glatiramer acetate in Huntington's disease mouse models: Evidence for BDNF-elevating and immunomodulatory mechanisms. Corey-Bloom J; Aikin AM; Gutierrez AM; Nadhem JS; Howell TL; Thomas EA Brain Res; 2017 Oct; 1673():102-110. PubMed ID: 28823953 [TBL] [Abstract][Full Text] [Related]
28. Oral uridine pro-drug PN401 is neuroprotective in the R6/2 and N171-82Q mouse models of Huntington's disease. Saydoff JA; Garcia RA; Browne SE; Liu L; Sheng J; Brenneman D; Hu Z; Cardin S; Gonzalez A; von Borstel RW; Gregorio J; Burr H; Beal MF Neurobiol Dis; 2006 Dec; 24(3):455-65. PubMed ID: 17011205 [TBL] [Abstract][Full Text] [Related]
29. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Jang SW; Liu X; Yepes M; Shepherd KR; Miller GW; Liu Y; Wilson WD; Xiao G; Blanchi B; Sun YE; Ye K Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2687-92. PubMed ID: 20133810 [TBL] [Abstract][Full Text] [Related]
30. Neuroprotection by ADAM10 inhibition requires TrkB signaling in the Huntington's disease hippocampus. Scolz A; Vezzoli E; Villa M; Talpo F; Cazzola J; Raffin F; Cordiglieri C; Falqui A; Pepe G; Maglione V; Besusso D; Biella G; Zuccato C Cell Mol Life Sci; 2024 Aug; 81(1):333. PubMed ID: 39112663 [TBL] [Abstract][Full Text] [Related]
32. Aberrant heart rate and brainstem brain-derived neurotrophic factor (BDNF) signaling in a mouse model of Huntington's disease. Griffioen KJ; Wan R; Brown TR; Okun E; Camandola S; Mughal MR; Phillips TM; Mattson MP Neurobiol Aging; 2012 Jul; 33(7):1481.e1-5. PubMed ID: 22209255 [TBL] [Abstract][Full Text] [Related]
33. TrkB Receptor Agonist 7,8 Dihydroxyflavone is Protective Against the Inner Retinal Deficits Induced by Experimental Glaucoma. Gupta V; Chitranshi N; Gupta V; You Y; Rajput R; Paulo JA; Mirzaei M; van den Buuse M; Graham SL Neuroscience; 2022 May; 490():36-48. PubMed ID: 35217121 [TBL] [Abstract][Full Text] [Related]
34. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington's disease mouse model. Peng Q; Masuda N; Jiang M; Li Q; Zhao M; Ross CA; Duan W Exp Neurol; 2008 Mar; 210(1):154-63. PubMed ID: 18096160 [TBL] [Abstract][Full Text] [Related]
35. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Miguez A; García-Díaz Barriga G; Brito V; Straccia M; Giralt A; Ginés S; Canals JM; Alberch J Hum Mol Genet; 2015 Sep; 24(17):4958-70. PubMed ID: 26063761 [TBL] [Abstract][Full Text] [Related]
36. Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington's disease. Duan W; Peng Q; Masuda N; Ford E; Tryggestad E; Ladenheim B; Zhao M; Cadet JL; Wong J; Ross CA Neurobiol Dis; 2008 Jun; 30(3):312-322. PubMed ID: 18403212 [TBL] [Abstract][Full Text] [Related]
37. Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients. Seo H; Kim W; Isacson O Hum Mol Genet; 2008 Oct; 17(20):3144-53. PubMed ID: 18640989 [TBL] [Abstract][Full Text] [Related]
38. 7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine. Ren Q; Zhang JC; Ma M; Fujita Y; Wu J; Hashimoto K Psychopharmacology (Berl); 2014 Jan; 231(1):159-66. PubMed ID: 23934209 [TBL] [Abstract][Full Text] [Related]
39. Chronic TrkB agonist treatment in old age does not mitigate diaphragm neuromuscular dysfunction. Greising SM; Vasdev AK; Zhan WZ; Sieck GC; Mantilla CB Physiol Rep; 2017 Jan; 5(1):. PubMed ID: 28082429 [TBL] [Abstract][Full Text] [Related]
40. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Zhao J; Du J; Pan Y; Chen T; Zhao L; Zhu Y; Chen Y; Zheng Y; Liu Y; Sun L; Hang P; Du Z Free Radic Biol Med; 2019 Jan; 130():557-567. PubMed ID: 30472367 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]