BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23446699)

  • 1. High-throughput identification of promiscuous inhibitors from screening libraries with the use of a thiol-containing fluorescent probe.
    McCallum MM; Nandhikonda P; Temmer JJ; Eyermann C; Simeonov A; Jadhav A; Yasgar A; Maloney D; Arnold AL
    J Biomol Screen; 2013 Jul; 18(6):705-13. PubMed ID: 23446699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds.
    Matlock MK; Hughes TB; Dahlin JL; Swamidass SJ
    J Chem Inf Model; 2018 Aug; 58(8):1483-1500. PubMed ID: 29990427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS.
    Dahlin JL; Nissink JW; Strasser JM; Francis S; Higgins L; Zhou H; Zhang Z; Walters MA
    J Med Chem; 2015 Mar; 58(5):2091-113. PubMed ID: 25634295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening of libraries of compounds to identify CFTR modulators.
    Pedemonte N; Zegarra-Moran O; Galietta LJ
    Methods Mol Biol; 2011; 741():13-21. PubMed ID: 21594775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screen for the chemical inhibitors of antiapoptotic bcl-2 family proteins by multiplex flow cytometry.
    Curpan RF; Simons PC; Zhai D; Young SM; Carter MB; Bologa CG; Oprea TI; Satterthwait AC; Reed JC; Edwards BS; Sklar LA
    Assay Drug Dev Technol; 2011 Oct; 9(5):465-74. PubMed ID: 21561376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time thiol detection in iPSC-derived neuron cultures using SemKur-IM, a novel fluorescent dithio probe.
    Alvarez R; Kurfis J; Hendrickson M; Sem DS
    SLAS Discov; 2024 Apr; 29(3):100127. PubMed ID: 38000947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a high-throughput fluorescent acetyltransferase assay to identify inhibitors of homocitrate synthase.
    Bulfer SL; McQuade TJ; Larsen MJ; Trievel RC
    Anal Biochem; 2011 Mar; 410(1):133-40. PubMed ID: 21073853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds.
    Proj M; Knez D; Sosič I; Gobec S
    Drug Discov Today; 2022 Jun; 27(6):1733-1742. PubMed ID: 35301150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation.
    Stork C; Kirchmair J
    Future Med Chem; 2018 Jul; 10(13):1533-1535. PubMed ID: 29956552
    [No Abstract]   [Full Text] [Related]  

  • 10. High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease.
    Balasubramanian A; Manzano M; Teramoto T; Pilankatta R; Padmanabhan R
    Antiviral Res; 2016 Oct; 134():6-16. PubMed ID: 27539384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fluorescence-based Lymphocyte Assay Suitable for High-throughput Screening of Small Molecules.
    Fouda A; Tahsini M; Khodayarian F; Al-Nafisah F; Rafei M
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescence-based high throughput assay for the determination of small molecule-human serum albumin protein binding.
    McCallum MM; Pawlak AJ; Shadrick WR; Simeonov A; Jadhav A; Yasgar A; Maloney DJ; Arnold LA
    Anal Bioanal Chem; 2014 Mar; 406(7):1867-75. PubMed ID: 24390461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2.
    Coussens NP; Kales SC; Henderson MJ; Lee OW; Horiuchi KY; Wang Y; Chen Q; Kuznetsova E; Wu J; Chakka S; Cheff DM; Cheng KC; Shinn P; Brimacombe KR; Shen M; Simeonov A; Lal-Nag M; Ma H; Jadhav A; Hall MD
    J Biol Chem; 2018 Aug; 293(35):13750-13765. PubMed ID: 29945974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol-ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity.
    Chen G; Feng H; Xi W; Xu J; Pan S; Qian Z
    Analyst; 2019 Jan; 144(2):559-566. PubMed ID: 30417195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of RNAi and Small Molecule Screens to Identify Targets for Drug Development.
    Drosopoulos K; Linardopoulos S
    Methods Mol Biol; 2019; 1953():33-42. PubMed ID: 30912014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence labels in kinases: a high-throughput kinase binding assay for the identification of DFG-out binding ligands.
    Simard JR; Rauh D
    Methods Mol Biol; 2012; 800():95-117. PubMed ID: 21964785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Wiley DS; Redfield SE; Zon LI
    Methods Cell Biol; 2017; 138():651-679. PubMed ID: 28129862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChemFH: an integrated tool for screening frequent false positives in chemical biology and drug discovery.
    Shi S; Fu L; Yi J; Yang Z; Zhang X; Deng Y; Wang W; Wu C; Zhao W; Hou T; Zeng X; Lyu A; Cao D
    Nucleic Acids Res; 2024 Jul; 52(W1):W439-W449. PubMed ID: 38783035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative reactivity analysis of small-molecule thiol surrogates.
    Petri L; Ábrányi-Balogh P; Varga PR; Imre T; Keserű GM
    Bioorg Med Chem; 2020 Apr; 28(7):115357. PubMed ID: 32081630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Quantitative Intrinsic Thiol Reactivity Evaluation Using a Fluorescence-Based Competitive Endpoint Assay.
    Sameshima T; Miyahisa I; Yamasaki S; Gotou M; Kobayashi T; Sakamoto J
    SLAS Discov; 2017 Oct; 22(9):1168-1174. PubMed ID: 28426937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.