BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23447374)

  • 1. Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate.
    Priji P; Unni KN; Sajith S; Benjamin S
    Yeast; 2013 Mar; 30(3):103-10. PubMed ID: 23447374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S
    J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production.
    Misra S; Raghuwanshi S; Gupta P; Dutt K; Saxena RK
    Antonie Van Leeuwenhoek; 2012 Feb; 101(2):393-402. PubMed ID: 21956659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Candida tropicalis BH-6 and synergistic effect with Pantoea agglomerans BH-18 on hydrogen production in marine culture.
    Zhu D; Ma Y; Wang G; Pan G
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2677-88. PubMed ID: 25561052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a new xylitol-producer Candida tropicalis strain.
    López F; Delgado OD; Martínez MA; Spencer JF; Figueroa LI
    Antonie Van Leeuwenhoek; 2004 May; 85(4):281-6. PubMed ID: 15031642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat.
    Priji P; Unni KN; Sajith S; Binod P; Benjamin S
    Biotechnol Appl Biochem; 2015; 62(1):71-8. PubMed ID: 24773509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil.
    Batista RM; Rufino RD; Luna JM; de Souza JE; Sarubbo LA
    Water Environ Res; 2010 May; 82(5):418-25. PubMed ID: 20480762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10.
    Gandhimathi R; Seghal Kiran G; Hema TA; Selvin J; Rajeetha Raviji T; Shanmughapriya S
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):825-35. PubMed ID: 19288138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation.
    Kiran GS; Thomas TA; Selvin J
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):8-16. PubMed ID: 20202801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01.
    Tan D; Xue YS; Aibaidula G; Chen GQ
    Bioresour Technol; 2011 Sep; 102(17):8130-6. PubMed ID: 21680179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation.
    Kim HS; Jeon JW; Kim BH; Ahn CY; Oh HM; Yoon BD
    Appl Microbiol Biotechnol; 2006 Apr; 70(4):391-6. PubMed ID: 16133323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular phylogenetic analysis of Candida tropicalis isolates by multi-locus sequence typing.
    Jacobsen MD; Davidson AD; Li SY; Shaw DJ; Gow NA; Odds FC
    Fungal Genet Biol; 2008 Jun; 45(6):1040-2. PubMed ID: 18440253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B.
    Joshi S; Bharucha C; Desai AJ
    Bioresour Technol; 2008 Jul; 99(11):4603-8. PubMed ID: 17855083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.
    Xia WJ; Luo ZB; Dong HP; Yu L; Cui QF; Bi YQ
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation and in vitro metabolic characterization of a lactate-utilizing bacterium from goat rumen].
    Long L; Mao S; Su Y; Zhu W
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1571-7. PubMed ID: 19271530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design.
    Roldán-Carrillo T; Martínez-García X; Zapata-Peñasco I; Castorena-Cortés G; Reyes-Avila J; Mayol-Castillo M; Olguín-Lora P
    Colloids Surf B Biointerfaces; 2011 Sep; 86(2):384-9. PubMed ID: 21592747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.
    Aparna A; Srinikethan G; Smitha H
    Colloids Surf B Biointerfaces; 2012 Jun; 95():23-9. PubMed ID: 22445235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformations for the production of the chiral drug (S)-Duloxetine catalyzed by a novel isolate of Candida tropicalis.
    Soni P; Banerjee UC
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):771-7. PubMed ID: 15660213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Medium optimization for enhanced production of carbonyl reductase by Candida tropicalis 104 by response surface methodology].
    Wang P; Sun L; He J
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):863-8. PubMed ID: 19777813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of the production of a red pigment in Penicillium sp. HSD07B synthesized during co-culture with Candida tropicalis.
    Hailei W; Zhifang R; Ping L; Yanchang G; Guosheng L; Jianming Y
    Bioresour Technol; 2011 May; 102(10):6082-7. PubMed ID: 21392975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.