BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

666 related articles for article (PubMed ID: 23447377)

  • 21. Determination of vanadium(V) with CdTe quantum dots as fluorescent probes.
    Hou M; Na J
    Anal Bioanal Chem; 2010 Aug; 397(8):3589-93. PubMed ID: 20556362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots.
    Shang L; Zhang L; Dong S
    Analyst; 2009 Jan; 134(1):107-13. PubMed ID: 19082182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of DNA using an "off-on" switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue.
    Shen Y; Liu S; Kong L; Tan X; He Y; Yang J
    Analyst; 2014 Nov; 139(22):5858-67. PubMed ID: 25221793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MPA-CdTe quantum dots as "on-off-on" sensitive fluorescence probe to detect ascorbic acid via redox reaction.
    Ding M; Wang K; Fang M; Zhu W; Du L; Li C
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118249. PubMed ID: 32179461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application.
    Shen Y; Liu S; He Y
    Luminescence; 2014 Mar; 29(2):176-82. PubMed ID: 23640753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids.
    Wu P; Yan XP
    Biosens Bioelectron; 2010 Oct; 26(2):485-90. PubMed ID: 20708916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterization of novel bithiazolidine derivatives-capped CdTe/CdS quantum dots used as a novel Hg
    Hallaj R; Hosseinchi Z; Babamiri B; Zandi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():418-423. PubMed ID: 30927699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition.
    Guo C; Wang J; Cheng J; Dai Z
    Biosens Bioelectron; 2012; 36(1):69-74. PubMed ID: 22521943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion.
    Liu Z; Liu S; Yin P; He Y
    Anal Chim Acta; 2012 Oct; 745():78-84. PubMed ID: 22938609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene-quantum-dots-based ratiometric fluorescent probe for visual detection of copper ion.
    Sun X; Liu P; Wu L; Liu B
    Analyst; 2015 Oct; 140(19):6742-7. PubMed ID: 26332573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots.
    Wang Q; Yu X; Zhan G; Li C
    Biosens Bioelectron; 2014 Apr; 54():311-6. PubMed ID: 24291268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots.
    Fei X; Yu M; Zhang B; Cao L; Yu L; Jia G; Zhou J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():343-51. PubMed ID: 26232578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method.
    Ding X; Qu L; Yang R; Zhou Y; Li J
    Luminescence; 2015 Jun; 30(4):465-71. PubMed ID: 25263990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green Luminescent CdTe Quantum Dot Based Fluorescence Nano-Sensor for Sensitive Detection of Arsenic (III).
    Vaishanav SK; Korram J; Pradhan P; Chandraker K; Nagwanshi R; Ghosh KK; Satnami ML
    J Fluoresc; 2017 May; 27(3):781-789. PubMed ID: 28032282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions.
    Wang Y; Zhang C; Chen X; Yang B; Yang L; Jiang C; Zhang Z
    Nanoscale; 2016 Mar; 8(11):5977-84. PubMed ID: 26928045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection.
    Pei J; Zhu H; Wang X; Zhang H; Yang X
    Anal Chim Acta; 2012 Dec; 757():63-8. PubMed ID: 23206397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots.
    Rezaei B; Shahshahanipour M; Ensafi AA
    Luminescence; 2016 Jun; 31(4):958-64. PubMed ID: 26542329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers.
    Borse V; Kashikar A; Srivastava R
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2582-2591. PubMed ID: 29442930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ratiometric Fluorescent Paper-Based Sensor Based on CdTe Quantum Dots and Graphite Carbon Nitride Hybrid for Visual and Rapid Determination of Cu
    He K; Zhan X; Liu L; Ruan X; Wu Y
    Photochem Photobiol; 2020 Sep; 96(5):1154-1160. PubMed ID: 32242937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene.
    Xu S; Lu H; Li J; Song X; Wang A; Chen L; Han S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8146-54. PubMed ID: 23876063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.