These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23447515)
1. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. Mahmood N; Zhang C; Jiang J; Liu F; Hou Y Chemistry; 2013 Apr; 19(16):5183-90. PubMed ID: 23447515 [TBL] [Abstract][Full Text] [Related]
2. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu S; Wang R; Wang Z; Lin Z Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278 [TBL] [Abstract][Full Text] [Related]
3. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. Zhao B; Zheng Y; Ye F; Deng X; Xu X; Liu M; Shao Z ACS Appl Mater Interfaces; 2015 Jul; 7(26):14446-55. PubMed ID: 26083395 [TBL] [Abstract][Full Text] [Related]
5. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Li B; Cao H; Shao J; Li G; Qu M; Yin G Inorg Chem; 2011 Mar; 50(5):1628-32. PubMed ID: 21244033 [TBL] [Abstract][Full Text] [Related]
6. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage. Ye F; Du G; Jiang Z; Zhong Y; Wang X; Cao Q; Jiang JZ Nanoscale; 2012 Dec; 4(23):7354-7. PubMed ID: 23093135 [TBL] [Abstract][Full Text] [Related]
7. Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries. Wang R; Wu S; Lv Y; Lin Z Langmuir; 2014 Jul; 30(27):8215-20. PubMed ID: 24937774 [TBL] [Abstract][Full Text] [Related]
8. Enhanced electrochemical performance of lithium ion batteries using Sb Dong Y; Yang S; Zhang Z; Lee JM; Zapien JA Nanoscale; 2018 Feb; 10(7):3159-3165. PubMed ID: 29411002 [TBL] [Abstract][Full Text] [Related]
9. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. Chang K; Chen W ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610 [TBL] [Abstract][Full Text] [Related]
10. Noble-metal-free Co Gu W; Hu L; Hong W; Jia X; Li J; Wang E Chem Sci; 2016 Jul; 7(7):4167-4173. PubMed ID: 30155061 [TBL] [Abstract][Full Text] [Related]
11. Defect effects on the physical and electrochemical properties of nanoscale LiFe0.92PO4 and LiFe0.92PO4/C/graphene composites. Wang Y; Feng ZS; Zhang C; Yu L; Chen JJ; Hu J; Liu XZ Nanoscale; 2013 May; 5(9):3704-12. PubMed ID: 23493954 [TBL] [Abstract][Full Text] [Related]
12. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. Wu ZS; Ren W; Xu L; Li F; Cheng HM ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205 [TBL] [Abstract][Full Text] [Related]
13. Electric papers of graphene-coated Co₃O₄ fibers for high-performance lithium-ion batteries. Yang X; Fan K; Zhu Y; Shen J; Jiang X; Zhao P; Luan S; Li C ACS Appl Mater Interfaces; 2013 Feb; 5(3):997-1002. PubMed ID: 23320959 [TBL] [Abstract][Full Text] [Related]
14. Graphene-like MoS₂/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Huang G; Chen T; Chen W; Wang Z; Chang K; Ma L; Huang F; Chen D; Lee JY Small; 2013 Nov; 9(21):3693-703. PubMed ID: 23766240 [TBL] [Abstract][Full Text] [Related]
15. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Zhang F; Cao H; Yue D; Zhang J; Qu M Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577 [TBL] [Abstract][Full Text] [Related]
16. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Yang Y; Ji X; Lu F; Chen Q; Banks CE Phys Chem Chem Phys; 2013 Sep; 15(36):15098-105. PubMed ID: 23925441 [TBL] [Abstract][Full Text] [Related]
17. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Xia F; Hu X; Sun Y; Luo W; Huang Y Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734 [TBL] [Abstract][Full Text] [Related]
18. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Dong Y; Ma R; Hu M; Cheng H; Yang Q; Li YY; Zapien JA Phys Chem Chem Phys; 2013 May; 15(19):7174-81. PubMed ID: 23558566 [TBL] [Abstract][Full Text] [Related]
19. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chang K; Chen W Chem Commun (Camb); 2011 Apr; 47(14):4252-4. PubMed ID: 21380470 [TBL] [Abstract][Full Text] [Related]
20. Composites of Layered M(HPO Ma M; Guo S; Shen W ACS Appl Mater Interfaces; 2018 Jan; 10(3):2612-2618. PubMed ID: 29297677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]