These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23447537)

  • 1. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli.
    Goltermann L; Good L; Bentin T
    J Biol Chem; 2013 Apr; 288(15):10483-9. PubMed ID: 23447537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells.
    Thomas JG; Baneyx F
    Mol Microbiol; 2000 Jun; 36(6):1360-70. PubMed ID: 10931286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interferon-gamma is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE.
    Vandenbroeck K; Billiau A
    Biochimie; 1998; 80(8-9):729-37. PubMed ID: 9865495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli.
    El Hage A; Sbaï M; Alix JH
    Mol Gen Genet; 2001 Feb; 264(6):796-808. PubMed ID: 11254127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins.
    Thomas JG; Baneyx F
    J Biol Chem; 1996 May; 271(19):11141-7. PubMed ID: 8626659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli.
    Gragerov A; Nudler E; Komissarova N; Gaitanaris GA; Gottesman ME; Nikiforov V
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10341-4. PubMed ID: 1359538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous Expression of Chaperones from Hyperthermophilic Archaea Inhibits Aminoglycoside-Induced Protein Misfolding in Escherichia coli.
    Peng S; Chu Z; Lu J; Li D; Wang Y; Yang S; Zhang Y
    Biochemistry (Mosc); 2017 Oct; 82(10):1169-1175. PubMed ID: 29037137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DnaK/DnaJ chaperone system reactivates endogenous E. coli thermostable FBP aldolase in vivo and in vitro; the effect is enhanced by GroE heat shock proteins.
    Kedzierska S; Jezierski G; Taylor A
    Cell Stress Chaperones; 2001 Jan; 6(1):29-37. PubMed ID: 11525240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
    Kerner MJ; Naylor DJ; Ishihama Y; Maier T; Chang HC; Stines AP; Georgopoulos C; Frishman D; Hayer-Hartl M; Mann M; Hartl FU
    Cell; 2005 Jul; 122(2):209-20. PubMed ID: 16051146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC.
    Stemp MJ; Guha S; Hartl FU; Barral JM
    Biol Chem; 2005 Aug; 386(8):753-7. PubMed ID: 16201870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway.
    Pérez-Rodríguez R; Fisher AC; Perlmutter JD; Hicks MG; Chanal A; Santini CL; Wu LF; Palmer T; DeLisa MP
    J Mol Biol; 2007 Mar; 367(3):715-30. PubMed ID: 17280684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of chaperone effects using a reconstituted cell-free translation system.
    Niwa T; Kanamori T; Ueda T; Taguchi H
    Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8937-42. PubMed ID: 22615364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli.
    Nishihara K; Kanemori M; Kitagawa M; Yanagi H; Yura T
    Appl Environ Microbiol; 1998 May; 64(5):1694-9. PubMed ID: 9572938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity.
    Ziemienowicz A; Skowyra D; Zeilstra-Ryalls J; Fayet O; Georgopoulos C; Zylicz M
    J Biol Chem; 1993 Dec; 268(34):25425-31. PubMed ID: 7902351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone-like activities of the CsaA protein of Bacillus subtilis.
    Müller JP; Bron S; Venema G; Maarten van Dijl J
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():77-88. PubMed ID: 10658654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli thioredoxin-like protein YbbN contains an atypical tetratricopeptide repeat motif and is a negative regulator of GroEL.
    Lin J; Wilson MA
    J Biol Chem; 2011 Jun; 286(22):19459-69. PubMed ID: 21498507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of adenine nucleotides, molecular chaperones and chaperonins in stabilization of DnaA initiator protein of Escherichia coli.
    Banecki B; Kaguni JM; Marszalek J
    Biochim Biophys Acta; 1998 Oct; 1442(1):39-48. PubMed ID: 9767098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overproduction of D-hydantoinase and carbamoylase in a soluble form in Escherichia coli.
    Chao YP; Chiang CJ; Lo TE; Fu H
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):348-53. PubMed ID: 11030571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.