These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23447588)

  • 41. A quantitative analysis of the correlations between eye movements and neural activity in the pretectum.
    Missal M; Coimbra A; Lefèvre P; Olivier E
    Exp Brain Res; 2002 Apr; 143(3):373-82. PubMed ID: 11889515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Saccadic modulation of stimulus processing in primary visual cortex.
    McFarland JM; Bondy AG; Saunders RC; Cumming BG; Butts DA
    Nat Commun; 2015 Sep; 6():8110. PubMed ID: 26370359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2016 Jun; 115(6):3162-73. PubMed ID: 26936983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area.
    Colby CL; Duhamel JR; Goldberg ME
    J Neurophysiol; 1996 Nov; 76(5):2841-52. PubMed ID: 8930237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern.
    Fuchs AF; Robinson FR; Straube A
    J Neurophysiol; 1993 Nov; 70(5):1723-40. PubMed ID: 8294949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Context dependent discharge characteristics of saccade-related Purkinje cells in the cerebellar hemispheres of the monkey.
    Mano N; Ito Y; Shibutani H
    Prog Brain Res; 1996; 112():423-30. PubMed ID: 8979847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys.
    Ohtsuka K; Noda H
    J Neurophysiol; 1991 Jun; 65(6):1422-34. PubMed ID: 1875251
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction between visual- and goal-related neuronal signals on the trajectories of saccadic eye movements.
    White BJ; Theeuwes J; Munoz DP
    J Cogn Neurosci; 2012 Mar; 24(3):707-17. PubMed ID: 22066585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direction and contrast tuning of macaque MSTd neurons during saccades.
    Crowder NA; Price NS; Mustari MJ; Ibbotson MR
    J Neurophysiol; 2009 Jun; 101(6):3100-7. PubMed ID: 19357345
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perceptual enhancement and suppression correlate with V1 neural activity during active sensing.
    Niemeyer JE; Akers-Campbell S; Gregoire A; Paradiso MA
    Curr Biol; 2022 Jun; 32(12):2654-2667.e4. PubMed ID: 35584697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field.
    Everling S; Munoz DP
    J Neurosci; 2000 Jan; 20(1):387-400. PubMed ID: 10627615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Saccadic suppression measured by steady-state visual evoked potentials.
    Chen J; Valsecchi M; Gegenfurtner KR
    J Neurophysiol; 2019 Jul; 122(1):251-258. PubMed ID: 30943105
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Saccade target selection in the superior colliculus during a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Oct; 88(4):2019-34. PubMed ID: 12364525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements.
    Bell AH; Meredith MA; Van Opstal AJ; Munoz DP
    J Neurophysiol; 2005 Jun; 93(6):3659-73. PubMed ID: 15703222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Saccade-related, long-lead burst neurons in the monkey rostral pons.
    Kaneko CR
    J Neurophysiol; 2006 Feb; 95(2):979-94. PubMed ID: 16236783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding.
    Snodderly DM; Kagan I; Gur M
    Vis Neurosci; 2001; 18(2):259-77. PubMed ID: 11417801
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contrast sensitivity, V1 neural activity, and natural vision.
    Niemeyer JE; Paradiso MA
    J Neurophysiol; 2017 Feb; 117(2):492-508. PubMed ID: 27832603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Response properties of pretectal omnidirectional pause neurons in the behaving primate.
    Mustari MJ; Fuchs AF; Pong M
    J Neurophysiol; 1997 Jan; 77(1):116-25. PubMed ID: 9120552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pre-excitatory pause in frontal eye field responses.
    Sato T; Schall JD
    Exp Brain Res; 2001 Jul; 139(1):53-8. PubMed ID: 11482843
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of oculomotor and visual activities in the primate pedunculopontine tegmental nucleus during visually guided saccade tasks.
    Okada K; Kobayashi Y
    Eur J Neurosci; 2009 Dec; 30(11):2211-23. PubMed ID: 20128856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.