These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23447607)

  • 1. Punishment-induced behavioral and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters.
    Galea JM; Ruge D; Buijink A; Bestmann S; Rothwell JC
    J Neurosci; 2013 Feb; 33(9):3981-8. PubMed ID: 23447607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal modulation of reward versus punishment learning by a dopamine D2-receptor antagonist in pathological gamblers.
    Janssen LK; Sescousse G; Hashemi MM; Timmer MH; ter Huurne NP; Geurts DE; Cools R
    Psychopharmacology (Berl); 2015 Sep; 232(18):3345-53. PubMed ID: 26092311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of motor cortex activity when observing rewarding and punishing actions.
    Brown EC; Wiersema JR; Pourtois G; Brüne M
    Neuropsychologia; 2013 Jan; 51(1):52-8. PubMed ID: 23159701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing the dopamine dependency of human striatal signals during reward and punishment reversal learning.
    van der Schaaf ME; van Schouwenburg MR; Geurts DE; Schellekens AF; Buitelaar JK; Verkes RJ; Cools R
    Cereb Cortex; 2014 Mar; 24(3):633-42. PubMed ID: 23183711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Dopamine in Temporal Uncertainty.
    Tomassini A; Ruge D; Galea JM; Penny W; Bestmann S
    J Cogn Neurosci; 2016 Jan; 28(1):96-110. PubMed ID: 26401816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of reward on corticospinal excitability during movement preparation.
    Klein PA; Olivier E; Duque J
    J Neurosci; 2012 Dec; 32(50):18124-36. PubMed ID: 23238727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome.
    Bologna M; Rocchi L; Paparella G; Nardella A; Li Voti P; Conte A; Kojovic M; Rothwell JC; Berardelli A
    Brain Stimul; 2015; 8(3):603-12. PubMed ID: 25697591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of monetary reward and punishment on psychological, physiological, behavioral and performance aspects of a golf putting task.
    Tanaka Y; Sekiya H
    Hum Mov Sci; 2011 Dec; 30(6):1115-28. PubMed ID: 21684618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticospinal excitability is enhanced while preparing for complex movements.
    Kennefick M; Burma JS; van Donkelaar P; McNeil CJ
    Exp Brain Res; 2019 Mar; 237(3):829-837. PubMed ID: 30610263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered visual feedback modulates cortical excitability in a mirror-box-like paradigm.
    Senna I; Russo C; Parise CV; Ferrario I; Bolognini N
    Exp Brain Res; 2015 Jun; 233(6):1921-9. PubMed ID: 25850405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms.
    Codol O; Holland PJ; Manohar SG; Galea JM
    J Neurosci; 2020 Apr; 40(18):3604-3620. PubMed ID: 32234779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans.
    Fresnoza S; Paulus W; Nitsche MA; Kuo MF
    J Neurosci; 2014 Feb; 34(7):2744-53. PubMed ID: 24523562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D2 receptor block abolishes θ burst stimulation-induced neuroplasticity in the human motor cortex.
    Monte-Silva K; Ruge D; Teo JT; Paulus W; Rothwell JC; Nitsche MA
    Neuropsychopharmacology; 2011 Sep; 36(10):2097-102. PubMed ID: 21697824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bypassing use-dependent plasticity in the primary motor cortex to preserve adaptive behavior.
    Bosc M; Bucchioni G; Ribot B; Michelet T
    Sci Rep; 2021 Jun; 11(1):12102. PubMed ID: 34103649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine Selectively Modulates the Outcome of Learning Unnatural Action-Valence Associations.
    Van Wouwe NC; Claassen DO; Neimat JS; Kanoff KE; Wylie SA
    J Cogn Neurosci; 2017 May; 29(5):816-826. PubMed ID: 28129053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emotion and motor preparation: A transcranial magnetic stimulation study of corticospinal motor tract excitability.
    Coombes SA; Tandonnet C; Fujiyama H; Janelle CM; Cauraugh JH; Summers JJ
    Cogn Affect Behav Neurosci; 2009 Dec; 9(4):380-8. PubMed ID: 19897791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study.
    van Elswijk G; Schot WD; Stegeman DF; Overeem S
    BMC Neurosci; 2008 Jun; 9():51. PubMed ID: 18559096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation.
    Neige C; Mavromatis N; Gagné M; Bouyer LJ; Mercier C
    J Physiol; 2018 Jul; 596(14):2917-2929. PubMed ID: 29855037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of human corticospinal excitability tracks the state of action preparation.
    Klein-Flügge MC; Nobbs D; Pitcher JB; Bestmann S
    J Neurosci; 2013 Mar; 33(13):5564-72. PubMed ID: 23536071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The COMT Val158Met polymorphism regulates the effect of a dopamine antagonist on the feedback-related negativity.
    Mueller EM; Burgdorf C; Chavanon ML; Schweiger D; Hennig J; Wacker J; Stemmler G
    Psychophysiology; 2014 Aug; 51(8):805-9. PubMed ID: 24773408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.