These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23447963)

  • 1. Dispersion and precipitation strengthened nanocrystalline and ultra fine grained copper.
    Stobrawa JP; Rdzawski ZM; Głuchowski WJ
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9102-11. PubMed ID: 23447963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and Enhanced Properties of Copper-Vanadium Nanocomposites Obtained by Powder Metallurgy.
    Wang Y; Wang J; Zou H; Wang Y; Ran X
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.
    Joshi PB; Rehani B; Naik P; Patel S; Khanna PK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2591-7. PubMed ID: 22755095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure Evolution and Properties of an In-Situ Nano-Gd
    Cao H; Zhan Z; Lv X
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Y
    Ke J; Xie Z; Liu R; Jing K; Cheng X; Wang H; Wang X; Wu X; Fang Q; Liu C
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brazing of Mo to Glidcop Dispersion Strengthened Copper for Accelerating Structures.
    Casalegno V; Perero S; Ferraris M; Taborelli M; Arnau Izquierdo G; Sgobba S; Salvo M
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A promising structure for fabricating high strength and high electrical conductivity copper alloys.
    Li R; Kang H; Chen Z; Fan G; Zou C; Wang W; Zhang S; Lu Y; Jie J; Cao Z; Li T; Wang T
    Sci Rep; 2016 Feb; 6():20799. PubMed ID: 26856764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys.
    Montealegre-Meléndez I; Arévalo C; Perez-Soriano EM; Neubauer E; Rubio-Escudero C; Kitzmantel M
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure, Mechanical and Electrical Properties of Hybrid Copper Matrix Composites with Fe Microspheres and rGO Nanosheets.
    Zhang X; He M; Zhan Y; Yang W; Wu K
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.
    Cabeza S; Garcés G; Pérez P; Adeva P
    J Mech Behav Biomed Mater; 2015 Jun; 46():115-26. PubMed ID: 25792409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between Microstructure and Properties of Cu-Cr-Ag-(Ce) Alloy Using Microscopic Investigation.
    Chen H; Yuan D; Wu S; Wang H; Xie W; Yang B
    Scanning; 2017; 2017():4646581. PubMed ID: 29109813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of PFM Firing Cycles on the Mechanical Properties, Phase Composition, and Microstructure of Nickel-Chromium Alloy.
    Anwar M; Tripathi A; Kar SK; Sekhar KC
    J Prosthodont; 2015 Dec; 24(8):634-41. PubMed ID: 26215348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Combination of Strength and Electrical Conductivity of Al-Mg-Si Alloy Processed by ECAP with Two-Step Temperature.
    Zhao N; Ban C; Wang H; Cui J
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys.
    Zhang E; Ren J; Li S; Yang L; Qin G
    Biomed Mater; 2016 Oct; 11(6):065001. PubMed ID: 27767022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.
    Zhang E; Li S; Ren J; Zhang L; Han Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():760-8. PubMed ID: 27612770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Thermo-Mechanical Treatment on the Microstructure and Tensile Properties of the Fe-22Cr-5Al-0.1Y Alloy.
    Che H; Zhai Y; Yan Y; Chen Y; Qin W; Wang T; Cao R
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron-Absorption Properties of B/Cu Composites.
    Wang H; Zhao S; Han J; Wu Y; Liu X; Wei Z
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of annealing temperature on the properties of powder metallurgy processed Ti-35Nb-2Zr-0.5O alloy.
    Málek J; Hnilica F; Veselý J; Smola B; Medlín R
    J Mech Behav Biomed Mater; 2017 Nov; 75():252-261. PubMed ID: 28756286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powder Metallurgy Route to Ultrafine-Grained Refractory Metals.
    Zhang L; Li X; Qu X; Qin M; Que Z; Wei Z; Guo C; Lu X; Dong Y
    Adv Mater; 2023 Dec; 35(50):e2205807. PubMed ID: 36036512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting.
    Kaiser R; Williamson K; O'Brien C; Ramirez-Garcia S; Browne DJ
    J Mech Behav Biomed Mater; 2013 Aug; 24():53-63. PubMed ID: 23683759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.