These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23447990)

  • 1. Magnetic-induced migration in a sedimenting suspension of magnetic spherical particles.
    Gontijo RG; Cunha FR
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9286-94. PubMed ID: 23447990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transverse gradient diffusion in a polydisperse dilute suspension of magnetic spheres during sedimentation.
    Cunha FR; Couto HL
    J Phys Condens Matter; 2008 May; 20(20):204129. PubMed ID: 21694258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravity-Induced Coagulation of Spherical Particles of Different Size and Density.
    Mazzolani G; Stolzenbach KD; Elimelech M
    J Colloid Interface Sci; 1998 Jan; 197(2):334-47. PubMed ID: 9466875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetoviscosity in dilute ferrofluids from rotational brownian dynamics simulations.
    Soto-Aquino D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046310. PubMed ID: 21230393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetoviscosity of dilute suspensions of magnetic ellipsoids obtained through rotational Brownian dynamics simulations.
    Sánchez JH; Rinaldi C
    J Colloid Interface Sci; 2009 Mar; 331(2):500-6. PubMed ID: 19100560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrohydrodynamic interaction of spherical particles under Quincke rotation.
    Das D; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043014. PubMed ID: 23679520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of two attractive ferromagnetic ellipsoidal particles by hydrodynamic interactions under alternating magnetic field.
    Abbas M; Bossis G
    Phys Rev E; 2017 Jun; 95(6-1):062611. PubMed ID: 28709332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoresis of nanoparticles.
    Kadaksham AT; Singh P; Aubry N
    Electrophoresis; 2004 Nov; 25(21-22):3625-32. PubMed ID: 15565698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear microrheology of active Brownian suspensions.
    Burkholder EW; Brady JF
    Soft Matter; 2020 Jan; 16(4):1034-1046. PubMed ID: 31854425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
    Lambert B; Weynans L; Bergmann M
    Phys Rev E; 2018 Mar; 97(3-1):033313. PubMed ID: 29776061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion attachment rates and collection forces on dust particles in a plasma sheath with finite ion inertia and mobility.
    Ono T; Kortshagen UR; Hogan CJ
    Phys Rev E; 2020 Dec; 102(6-1):063212. PubMed ID: 33465977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid particle diffusion in a semidilute suspension of model micro-organisms.
    Ishikawa T; Locsei JT; Pedley TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021408. PubMed ID: 20866810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions.
    Hadji L; DarAssi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013014. PubMed ID: 24580327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Aggregation due to Combined Gravitational and Electrophoretic Motion.
    Wang H; Zeng S; Loewenberg M; Davis RH
    J Colloid Interface Sci; 1997 Mar; 187(1):213-20. PubMed ID: 9245330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic Interactions and Mean Settling Velocity of Porous Particles in a Dilute Suspension.
    Chen SB; Cai A
    J Colloid Interface Sci; 1999 Sep; 217(2):328-340. PubMed ID: 10469541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subdiffusive behavior of a dilute non-Brownian suspension under shear.
    Guzmán-Lastra F; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042311. PubMed ID: 23679418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.