BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23448233)

  • 1. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora.
    Chen CY; Chiu MC; Kuo MH
    Bull Entomol Res; 2013 Aug; 103(4):406-13. PubMed ID: 23448233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming.
    Ma G; Ma CS
    J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod.
    Zhao F; Zhang W; Hoffmann AA; Ma CS
    J Anim Ecol; 2014 Jul; 83(4):769-78. PubMed ID: 24372332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate warming may increase aphids' dropping probabilities in response to high temperatures.
    Ma G; Ma CS
    J Insect Physiol; 2012 Nov; 58(11):1456-62. PubMed ID: 22940260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid?
    Ma G; Hoffmann AA; Ma CS
    J Therm Biol; 2021 May; 98():102936. PubMed ID: 34016358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic.
    Hazell SP; Groutides C; Neve BP; Blackburn TM; Bale JS
    J Insect Physiol; 2010 Feb; 56(2):115-22. PubMed ID: 19723528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daily temperature extremes play an important role in predicting thermal effects.
    Ma G; Hoffmann AA; Ma CS
    J Exp Biol; 2015 Jul; 218(Pt 14):2289-96. PubMed ID: 26026043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming.
    Sendall KM; Reich PB; Zhao C; Jihua H; Wei X; Stefanski A; Rice K; Rich RL; Montgomery RA
    Glob Chang Biol; 2015 Mar; 21(3):1342-57. PubMed ID: 25354151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.
    Rosa R; Lopes AR; Pimentel M; Faleiro F; Baptista M; Trübenbach K; Narciso L; Dionísio G; Pegado MR; Repolho T; Calado R; Diniz M
    Glob Chang Biol; 2014 Oct; 20(10):3068-79. PubMed ID: 24771544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness.
    Powell SJ; Bale JS
    J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperthermic aphids: insights into behaviour and mortality.
    Hazell SP; Neve BP; Groutides C; Douglas AE; Blackburn TM; Bale JS
    J Insect Physiol; 2010 Feb; 56(2):123-31. PubMed ID: 19737571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae.
    Sandrock C; Razmjou J; Vorburger C
    Mol Ecol; 2011 Oct; 20(19):4165-81. PubMed ID: 21883588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking speed adaptation ability of Myzus persicae to different temperature conditions.
    Alford L; Hughes GE; Blackburn TM; Bale JS
    Bull Entomol Res; 2012 Jun; 102(3):303-13. PubMed ID: 22123410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion.
    Zeh JA; Bonilla MM; Su EJ; Padua MV; Anderson RV; Zeh DW
    Sci Rep; 2014 Jan; 4():3706. PubMed ID: 24424082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming.
    García-Robledo C; Baer CS
    J Evol Biol; 2021 Sep; 34(9):1432-1446. PubMed ID: 34265126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of developmental temperatures on Aphidius colemani host-foraging behavior at high temperature.
    Jerbi-Elayed M; Tougeron K; Grissa-Lebdi K; Hance T
    J Therm Biol; 2022 Jan; 103():103140. PubMed ID: 35027198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.