These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23448272)

  • 1. Biosurveillance in outbreak investigations.
    Kaydos-Daniels SC; Rojas Smith L; Farris TR
    Biosecur Bioterror; 2013 Mar; 11(1):20-8. PubMed ID: 23448272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syndromic Surveillance System for Korea-US Joint Biosurveillance Portal: Design and Lessons Learned.
    Rhee C; Burkom H; Yoon CG; Stewart M; Elbert Y; Katz A; Tak S
    Health Secur; 2016; 14(3):152-60. PubMed ID: 27314655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timeliness of emergency department diagnoses for syndromic surveillance.
    Travers D; Barnett C; Ising A; Waller A
    AMIA Annu Symp Proc; 2006; 2006():769-73. PubMed ID: 17238445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory-guided detection of disease outbreaks: three generations of surveillance systems.
    Sintchenko V; Gallego B
    Arch Pathol Lab Med; 2009 Jun; 133(6):916-25. PubMed ID: 19492884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced health event detection and influenza surveillance using a joint Veterans Affairs and Department of Defense biosurveillance application.
    Lucero CA; Oda G; Cox K; Maldonado F; Lombardo J; Wojcik R; Holodniy M
    BMC Med Inform Decis Mak; 2011 Sep; 11():56. PubMed ID: 21929813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of natural language processing biosurveillance methods for identifying influenza from encounter notes.
    Elkin PL; Froehling DA; Wahner-Roedler DL; Brown SH; Bailey KR
    Ann Intern Med; 2012 Jan; 156(1 Pt 1):11-8. PubMed ID: 22213490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-ALIRT biosurveillance detection algorithm evaluation.
    Siegrist D; Pavlin J
    MMWR Suppl; 2004 Sep; 53():152-8. PubMed ID: 15714645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field investigations of emergency department syndromic surveillance signals--New York City.
    Steiner-Sichel L; Greenko J; Heffernan R; Layton M; Weiss D
    MMWR Suppl; 2004 Sep; 53():184-9. PubMed ID: 15717390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural models used in real-time biosurveillance outbreak detection and outbreak curve isolation from noisy background morbidity levels.
    Cheng KE; Crary DJ; Ray J; Safta C
    J Am Med Inform Assoc; 2013 May; 20(3):435-40. PubMed ID: 23037798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital disease detection: A systematic review of event-based internet biosurveillance systems.
    O'Shea J
    Int J Med Inform; 2017 May; 101():15-22. PubMed ID: 28347443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the joint disease outbreak-detection time when an automated biosurveillance system is augmenting traditional clinical case finding.
    Shen Y; Adamou C; Dowling JN; Cooper GF
    J Biomed Inform; 2008 Apr; 41(2):224-31. PubMed ID: 18194876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syndromic analysis of computerized emergency department patients' chief complaints: an opportunity for bioterrorism and influenza surveillance.
    Irvin CB; Nouhan PP; Rice K
    Ann Emerg Med; 2003 Apr; 41(4):447-52. PubMed ID: 12658241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Conceptual Architecture for National Biosurveillance: Moving Beyond Situational Awareness to Enable Digital Detection of Emerging Threats.
    Velsko S; Bates T
    Health Secur; 2016; 14(3):189-201. PubMed ID: 27314659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated biosurveillance data from England and Wales, 1991-2011.
    Enki DG; Noufaily A; Garthwaite PH; Andrews NJ; Charlett A; Lane C; Farrington CP
    Emerg Infect Dis; 2013 Jan; 19(1):35-42. PubMed ID: 23260848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new statistical early outbreak detection method for biosurveillance and performance comparisons.
    Cengiz Ü; Karahasan M
    Stat Med; 2019 Nov; 38(27):5236-5258. PubMed ID: 31588592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing performance of internet-based biosurveillance systems used in epidemic intelligence for early detection of infectious diseases outbreaks.
    Barboza P; Vaillant L; Le Strat Y; Hartley DM; Nelson NP; Mawudeku A; Madoff LC; Linge JP; Collier N; Brownstein JS; Astagneau P
    PLoS One; 2014; 9(3):e90536. PubMed ID: 24599062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early detection of influenza outbreaks using the DC Department of Health's syndromic surveillance system.
    Griffin BA; Jain AK; Davies-Cole J; Glymph C; Lum G; Washington SC; Stoto MA
    BMC Public Health; 2009 Dec; 9():483. PubMed ID: 20028535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new prior for bayesian anomaly detection: application to biosurveillance.
    Shen Y; Cooper GF
    Methods Inf Med; 2010; 49(1):44-53. PubMed ID: 20027381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing time-series detection algorithms for automated biosurveillance.
    Tokars JI; Burkom H; Xing J; English R; Bloom S; Cox K; Pavlin JA
    Emerg Infect Dis; 2009 Apr; 15(4):533-9. PubMed ID: 19331728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosurveillance of emerging biothreats using scalable genotype clustering.
    Gallego B; Sintchenko V; Wang Q; Hiley L; Gilbert GL; Coiera E
    J Biomed Inform; 2009 Feb; 42(1):66-73. PubMed ID: 18723122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.