These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23448304)

  • 1. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
    Svetlitchnyi VA; Kensch O; Falkenhan DA; Korseska SG; Lippert N; Prinz M; Sassi J; Schickor A; Curvers S
    Biotechnol Biofuels; 2013 Feb; 6(1):31. PubMed ID: 23448304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct conversion of cellulose to L-lactic acid by a novel thermophilic Caldicellulosiruptor strain.
    Svetlitchnyi VA; Svetlichnaya TP; Falkenhan DA; Swinnen S; Knopp D; Läufer A
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):44. PubMed ID: 35501875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria.
    Cao GL; Zhao L; Wang AJ; Wang ZY; Ren NQ
    Biotechnol Biofuels; 2014; 7():82. PubMed ID: 24920960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.
    Singh N; Mathur AS; Tuli DK; Gupta RP; Barrow CJ; Puri M
    Biotechnol Biofuels; 2017; 10():73. PubMed ID: 28344648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production.
    Verbeke TJ; Zhang X; Henrissat B; Spicer V; Rydzak T; Krokhin OV; Fristensky B; Levin DB; Sparling R
    PLoS One; 2013; 8(3):e59362. PubMed ID: 23555660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering
    Bashir Z; Sheng L; Anil A; Lali A; Minton NP; Zhang Y
    Biotechnol Biofuels; 2019; 12():199. PubMed ID: 31452680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source.
    Rubinstein GM; Lipscomb GL; Williams-Rhaesa AM; Schut GJ; Kelly RM; Adams MWW
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):585-597. PubMed ID: 32783103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium,
    Williams-Rhaesa AM; Rubinstein GM; Scott IM; Lipscomb GL; Poole Ii FL; Kelly RM; Adams MWW
    Metab Eng Commun; 2018 Dec; 7():e00073. PubMed ID: 30009131
    [No Abstract]   [Full Text] [Related]  

  • 12. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome.
    Kim SK; Russell J; Cha M; Himmel ME; Bomble YJ; Westpheling J
    Appl Environ Microbiol; 2021 Jun; 87(14):e0052421. PubMed ID: 33990300
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolic engineering of
    Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and "Thermoanaerobacter cellulolyticus".
    Lee LL; Izquierdo JA; Blumer-Schuette SE; Zurawski JV; Conway JM; Cottingham RW; Huntemann M; Copeland A; Chen IM; Kyrpides N; Markowitz V; Palaniappan K; Ivanova N; Mikhailova N; Ovchinnikova G; Andersen E; Pati A; Stamatis D; Reddy TB; Shapiro N; Nordberg HP; Cantor MN; Hua SX; Woyke T; Kelly RM
    Genome Announc; 2015 May; 3(3):. PubMed ID: 25977428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Enhanced role of the co-culture of thermophilic anaerobic bacteria on cellulosic ethanol].
    Fang ZG
    Huan Jing Ke Xue; 2010 Apr; 31(4):1059-65. PubMed ID: 20527192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium.
    Rainey FA; Donnison AM; Janssen PH; Saul D; Rodrigo A; Bergquist PL; Daniel RM; Stackebrandt E; Morgan HW
    FEMS Microbiol Lett; 1994 Jul; 120(3):263-6. PubMed ID: 8076802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cellulose degradation and ethanol production of different Clostridium strain].
    Fang ZG; Ouyang ZY
    Huan Jing Ke Xue; 2010 Aug; 31(8):1926-31. PubMed ID: 21090315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of
    Zheng T; Cui J; Bae HR; Lynd LR; Olson DG
    Biotechnol Biofuels; 2017; 10():251. PubMed ID: 29213311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs.
    Miroshnichenko ML; Kublanov IV; Kostrikina NA; Tourova TP; Kolganova TV; Birkeland NK; Bonch-Osmolovskaya EA
    Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1492-6. PubMed ID: 18523201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose.
    Chou KJ; Croft T; Hebdon SD; Magnusson LR; Xiong W; Reyes LH; Chen X; Miller EJ; Riley DM; Dupuis S; Laramore KA; Keller LM; Winkelman D; Maness PC
    Metab Eng; 2024 May; 83():193-205. PubMed ID: 38631458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.