These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 23448304)
21. Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable β-glucosidase. Prawitwong P; Waeonukul R; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Deng L; Sermsathanaswadi J; Septiningrum K; Mori Y; Kosugi A Biotechnol Biofuels; 2013 Dec; 6(1):184. PubMed ID: 24359557 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. He Q; Hemme CL; Jiang H; He Z; Zhou J Bioresour Technol; 2011 Oct; 102(20):9586-92. PubMed ID: 21868218 [TBL] [Abstract][Full Text] [Related]
23. Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources. Wushke S; Levin DB; Cicek N; Sparling R Can J Microbiol; 2013 Oct; 59(10):679-83. PubMed ID: 24102221 [TBL] [Abstract][Full Text] [Related]
24. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Lee LL; Hart WS; Lunin VV; Alahuhta M; Bomble YJ; Himmel ME; Blumer-Schuette SE; Adams MWW; Kelly RM Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478233 [TBL] [Abstract][Full Text] [Related]
25. Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose. Sheng T; Zhao L; Gao LF; Liu WZ; Cui MH; Guo ZC; Ma XD; Ho SH; Wang AJ Biotechnol Biofuels; 2016; 9():172. PubMed ID: 27525041 [TBL] [Abstract][Full Text] [Related]
26. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411. Andersen RL; Jensen KM; Mikkelsen MJ PLoS One; 2015; 10(8):e0136060. PubMed ID: 26295944 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Rodionov DA; Rodionova IA; Rodionov VA; Arzamasov AA; Zhang K; Rubinstein GM; Tanwee TNN; Bing RG; Crosby JR; Nookaew I; Basen M; Brown SD; Wilson CM; Klingeman DM; Poole FL; Zhang Y; Kelly RM; Adams MWW mSystems; 2021 Jun; 6(3):e0134520. PubMed ID: 34060910 [TBL] [Abstract][Full Text] [Related]
28. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose. Straub CT; Bing RG; Otten JK; Keller LM; Zeldes BM; Adams MWW; Kelly RM Biotechnol Bioeng; 2020 Dec; 117(12):3799-3808. PubMed ID: 32770740 [TBL] [Abstract][Full Text] [Related]
29. Synergy of Cellulase Systems between Wang N; Yan Z; Liu N; Zhang X; Xu C Microorganisms; 2022 Feb; 10(3):. PubMed ID: 35336078 [TBL] [Abstract][Full Text] [Related]
30. A novel SfaNI-like restriction-modification system in Caldicellulosiruptor extents the genetic engineering toolbox for this genus. Swinnen S; Zurek C; Krämer M; Heger RM; Domeyer JE; Ziegler J; Svetlitchnyi VA; Läufer A PLoS One; 2022; 17(12):e0279562. PubMed ID: 36580476 [TBL] [Abstract][Full Text] [Related]
32. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Chung D; Cha M; Guss AM; Westpheling J Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8931-6. PubMed ID: 24889625 [TBL] [Abstract][Full Text] [Related]
33. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extremely thermophilic, high ethanol-yielding bacterium isolated from household waste. Tomás AF; Karakashev D; Angelidaki I Int J Syst Evol Microbiol; 2013 Jul; 63(Pt 7):2396-2404. PubMed ID: 23178727 [TBL] [Abstract][Full Text] [Related]
34. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment. Peng X; Qiao W; Mi S; Jia X; Su H; Han Y Biotechnol Biofuels; 2015; 8():131. PubMed ID: 26322125 [TBL] [Abstract][Full Text] [Related]
35. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Jiang Y; Guo D; Lu J; Dürre P; Dong W; Yan W; Zhang W; Ma J; Jiang M; Xin F Biotechnol Biofuels; 2018; 11():89. PubMed ID: 29619085 [TBL] [Abstract][Full Text] [Related]
36. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Ying Y; Meng D; Chen X; Li F Enzyme Microb Technol; 2013 Aug; 53(3):194-9. PubMed ID: 23830462 [TBL] [Abstract][Full Text] [Related]
37. Enhanced depolymerization and utilization of raw lignocellulosic material by co-cultures of Ruminiclostridium thermocellum with hemicellulose-utilizing partners. Froese A; Schellenberg J; Sparling R Can J Microbiol; 2019 Apr; 65(4):296-307. PubMed ID: 30608879 [TBL] [Abstract][Full Text] [Related]
38. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Mulat DG; Huerta SG; Kalyani D; Horn SJ Biotechnol Biofuels; 2018; 11():19. PubMed ID: 29422947 [TBL] [Abstract][Full Text] [Related]
39. Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii. Chung D; Cha M; Snyder EN; Elkins JG; Guss AM; Westpheling J Biotechnol Biofuels; 2015; 8():163. PubMed ID: 26442761 [TBL] [Abstract][Full Text] [Related]
40. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Blumer-Schuette SE; Lewis DL; Kelly RM Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]