BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23448888)

  • 1. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara).
    San-Jose LM; Granado-Lorencio F; Sinervo B; Fitze PS
    Am Nat; 2013 Mar; 181(3):396-409. PubMed ID: 23448888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid-based coloration, oxidative stress and corticosterone in common lizards.
    Cote J; Meylan S; Clobert J; Voituron Y
    J Exp Biol; 2010 Jun; 213(Pt 12):2116-24. PubMed ID: 20511526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmentally induced changes in carotenoid-based coloration of female lizards: a comment on Vercken et al.
    Cote J; Le Galliard JF; Rossi JM; Fitze PS
    J Evol Biol; 2008 Jul; 21(4):1165-72; discussion 1160-4. PubMed ID: 18435721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting carotenoid from structural components of carotenoid-based coloration: a field experiment with great tits (Parus major).
    Jacot A; Romero-Diaz C; Tschirren B; Richner H; Fitze PS
    Am Nat; 2010 Jul; 176(1):55-62. PubMed ID: 20470031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores.
    Mäthger LM; Hanlon RT
    Cell Tissue Res; 2007 Jul; 329(1):179-86. PubMed ID: 17410381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid coloration in greenfinches is individually consistent irrespective of foraging ability.
    Karu U; Saks L; Hõrak P
    Physiol Biochem Zool; 2007; 80(6):663-70. PubMed ID: 17910002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light reflection from crystal platelets in iridophores determines green or brown skin coloration in Takydromus lizards.
    Kuriyama T; Esashi J; Hasegawa M
    Zoology (Jena); 2017 Apr; 121():83-90. PubMed ID: 27939816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test.
    McGraw KJ; Ardia DR
    Am Nat; 2003 Dec; 162(6):704-12. PubMed ID: 14737708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration.
    Kuriyama T; Miyaji K; Sugimoto M; Hasegawa M
    Zoolog Sci; 2006 Sep; 23(9):793-9. PubMed ID: 17043401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticosterone regulates multiple colour traits in Lacerta [Zootoca] vivipara males.
    San-Jose LM; Fitze PS
    J Evol Biol; 2013 Dec; 26(12):2681-90. PubMed ID: 24118447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus.
    Lin SM; Nieves-Puigdoller K; Brown AC; McGraw KJ; Clotfelter ED
    Physiol Biochem Zool; 2010; 83(2):333-42. PubMed ID: 20151818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integumental reddish-violet coloration owing to novel dichromatic chromatophores in the teleost fish, Pseudochromis diadema.
    Goda M; Ohata M; Ikoma H; Fujiyoshi Y; Sugimoto M; Fujii R
    Pigment Cell Melanoma Res; 2011 Aug; 24(4):614-7. PubMed ID: 21501419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.
    McGraw KJ; Toomey MB
    Physiol Biochem Zool; 2010; 83(1):97-109. PubMed ID: 19929687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of pterin and carotenoid pigments to dewlap coloration in two anole species.
    Steffen JE; McGraw KJ
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):42-6. PubMed ID: 17056290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid-based colours reflect the stress response in the common lizard.
    Fitze PS; Cote J; San-Jose LM; Meylan S; Isaksson C; Andersson S; Rossi JM; Clobert J
    PLoS One; 2009; 4(4):e5111. PubMed ID: 19352507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary modulation of lens zeaxanthin in quail.
    Dorey CK; Granata L; Nichols CR; Cheng KM; Craft NE
    Exp Eye Res; 2005 Oct; 81(4):464-77. PubMed ID: 15913607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches.
    McGraw KJ; Hill GE; Navara KJ; Parker RS
    Physiol Biochem Zool; 2004; 77(3):484-91. PubMed ID: 15286921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pteridine, not carotenoid, pigments underlie the female-specific orange ornament of striped plateau lizards (Sceloporus virgatus).
    Weiss SL; Foerster K; Hudon J
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Feb; 161(2):117-23. PubMed ID: 22036614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches.
    Hill GE; Hood WR; Huggins K
    J Exp Biol; 2009 Apr; 212(Pt 8):1225-33. PubMed ID: 19329755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus.
    Vergara P; Fargallo JA; Martínez-Padilla J
    J Evol Biol; 2015 Jan; 28(1):146-54. PubMed ID: 25404009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.