BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

717 related articles for article (PubMed ID: 23449093)

  • 21. TrueSight: a new algorithm for splice junction detection using RNA-seq.
    Li Y; Li-Byarlay H; Burns P; Borodovsky M; Robinson GE; Ma J
    Nucleic Acids Res; 2013 Feb; 41(4):e51. PubMed ID: 23254332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CLASS: constrained transcript assembly of RNA-seq reads.
    Song L; Florea L
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S14. PubMed ID: 23734605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing.
    Pan Q; Shai O; Lee LJ; Frey BJ; Blencowe BJ
    Nat Genet; 2008 Dec; 40(12):1413-5. PubMed ID: 18978789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.
    Shi Y; Chinnaiyan AM; Jiang H
    Bioinformatics; 2015 Jul; 31(13):2222-4. PubMed ID: 25717189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Freddie: annotation-independent detection and discovery of transcriptomic alternative splicing isoforms using long-read sequencing.
    Orabi B; Xie N; McConeghy B; Dong X; Chauve C; Hach F
    Nucleic Acids Res; 2023 Jan; 51(2):e11. PubMed ID: 36478271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational discovery of human coding and non-coding transcripts with conserved splice sites.
    Rose D; Hiller M; Schutt K; Hackermüller J; Backofen R; Stadler PF
    Bioinformatics; 2011 Jul; 27(14):1894-900. PubMed ID: 21622663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads.
    Xie Y; Wu G; Tang J; Luo R; Patterson J; Liu S; Huang W; He G; Gu S; Li S; Zhou X; Lam TW; Li Y; Xu X; Wong GK; Wang J
    Bioinformatics; 2014 Jun; 30(12):1660-6. PubMed ID: 24532719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentially expressed alternatively spliced genes in malignant pleural mesothelioma identified using massively parallel transcriptome sequencing.
    Dong L; Jensen RV; De Rienzo A; Gordon GJ; Xu Y; Sugarbaker DJ; Bueno R
    BMC Med Genet; 2009 Dec; 10():149. PubMed ID: 20043850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.
    Schulz MH; Zerbino DR; Vingron M; Birney E
    Bioinformatics; 2012 Apr; 28(8):1086-92. PubMed ID: 22368243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction and Quantification of Splice Events from RNA-Seq Data.
    Goldstein LD; Cao Y; Pau G; Lawrence M; Wu TD; Seshagiri S; Gentleman R
    PLoS One; 2016; 11(5):e0156132. PubMed ID: 27218464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of data-specific constitutive exons with RNA-Seq data.
    Patrick E; Buckley M; Yang YH
    BMC Bioinformatics; 2013 Jan; 14():31. PubMed ID: 23360225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel model used to detect differential splice junctions as biomarkers in prostate cancer from RNA-Seq data.
    Rezaeian I; Tavakoli A; Cavallo-Medved D; Porter LA; Rueda L
    J Biomed Inform; 2016 Apr; 60():422-30. PubMed ID: 26992567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification Exon Skipping Events From High-Throughput RNA Sequencing Data.
    Bai Y; Ji S; Jiang Q; Wang Y
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):562-9. PubMed ID: 25935040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of RNA splicing analysis null models for post hoc filtering of Drosophila head RNA-Seq data with the splicing analysis kit (Spanki).
    Sturgill D; Malone JH; Sun X; Smith HE; Rabinow L; Samson ML; Oliver B
    BMC Bioinformatics; 2013 Nov; 14():320. PubMed ID: 24209455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A probabilistic framework for aligning paired-end RNA-seq data.
    Hu Y; Wang K; He X; Chiang DY; Prins JF; Liu J
    Bioinformatics; 2010 Aug; 26(16):1950-7. PubMed ID: 20576625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing.
    Pulyakhina I; Gazzoli I; 't Hoen PA; Verwey N; den Dunnen JT; Aartsma-Rus A; Laros JF
    Nucleic Acids Res; 2015 Jul; 43(12):e80. PubMed ID: 25800735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples.
    Kimes PK; Cabanski CR; Wilkerson MD; Zhao N; Johnson AR; Perou CM; Makowski L; Maher CA; Liu Y; Marron JS; Hayes DN
    Nucleic Acids Res; 2014 Aug; 42(14):e113. PubMed ID: 25030904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data.
    Suo C; Calza S; Salim A; Pawitan Y
    Bioinformatics; 2014 Feb; 30(4):506-13. PubMed ID: 24307704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors.
    Wang J; Ye Z; Huang TH; Shi H; Jin VX
    Methods Mol Biol; 2017; 1513():163-170. PubMed ID: 27807836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.