These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 23449237)

  • 21. The Effect of Intensity on 3-Dimensional Kinematics and Coordination in Front-Crawl Swimming.
    de Jesus K; Sanders R; de Jesus K; Ribeiro J; Figueiredo P; Vilas-Boas JP; Fernandes RJ
    Int J Sports Physiol Perform; 2016 Sep; 11(6):768-775. PubMed ID: 26658832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Do traditional and reverse swimming training periodizations lead to similar aerobic performance improvements?
    Clemente-Suárez VJ; Fernandes RJ; de Jesus K; Pelarigo JG; Arroyo-Toledo JJ; Vilas-Boas JP
    J Sports Med Phys Fitness; 2018 Jun; 58(6):761-767. PubMed ID: 29877679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of simulated and real altitude exposure in elite swimmers.
    Robertson EY; Aughey RJ; Anson JM; Hopkins WG; Pyne DB
    J Strength Cond Res; 2010 Feb; 24(2):487-93. PubMed ID: 20072049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes.
    Martin L; Whyte GP
    Int J Sports Med; 2000 Jul; 21(5):366-8. PubMed ID: 10950447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliability and Validity of Tethered Swimming Lactate Minimum Test and Their Relationship With Performance in Young Swimmers.
    Kalva-Filho CA; Toubekis A; Zagatto AM; da Silva ASR; Loures JP; Campos EZ; Papoti M
    Pediatr Exerc Sci; 2018 Aug; 30(3):383-392. PubMed ID: 29580176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises.
    Olbrecht J; Madsen O; Mader A; Liesen H; Hollmann W
    Int J Sports Med; 1985 Apr; 6(2):74-7. PubMed ID: 4008143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lactate minimum underestimates the maximal lactate steady-state in swimming mice.
    Rodrigues NA; Torsoni AS; Fante T; Dos Reis IG; Gobatto CA; Manchado-Gobatto FB
    Appl Physiol Nutr Metab; 2017 Jan; 42(1):46-52. PubMed ID: 28006434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of changing pace on metabolism and stroke characteristics during high-speed breaststroke swimming.
    Thompson KG; MacLaren DP; Lees A; Atkinson G
    J Sports Sci; 2004 Feb; 22(2):149-57. PubMed ID: 14998093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tethered Swimming for the Evaluation and Prescription of Resistance Training in Young Swimmers.
    Papoti M; da Silva AS; Kalva-Filho CA; Araujo GG; Santiago V; Martins LB; Cunha SA; Gobatto CA
    Int J Sports Med; 2017 Feb; 38(2):125-133. PubMed ID: 28173605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.
    Morouço PG; Marinho DA; Keskinen KL; Badillo JJ; Marques MC
    J Strength Cond Res; 2014 Nov; 28(11):3093-9. PubMed ID: 24796981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lactate threshold concepts: how valid are they?
    Faude O; Kindermann W; Meyer T
    Sports Med; 2009; 39(6):469-90. PubMed ID: 19453206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of elite open-water swimmers.
    VanHeest JL; Mahoney CE; Herr L
    J Strength Cond Res; 2004 May; 18(2):302-5. PubMed ID: 15142018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Different Methods for the Swimming Aerobic Capacity Evaluation.
    Pelarigo JG; Fernandes RJ; Ribeiro J; Denadai BS; Greco CC; Vilas-Boas JP
    J Strength Cond Res; 2018 Dec; 32(12):3542-3551. PubMed ID: 28240707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity of critical velocity as swimming fatigue threshold in the competitive swimmer.
    Wakayoshi K; Yoshida T; Kasai T; Moritani T; Mutoh Y; Miyashita M
    Ann Physiol Anthropol; 1992 May; 11(3):301-7. PubMed ID: 1642728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of manipulating volume and intensity training in masters swimmers.
    Pugliese L; Porcelli S; Bonato M; Pavei G; La Torre A; Maggioni MA; Bellistri G; Marzorati M
    Int J Sports Physiol Perform; 2015 Oct; 10(7):907-12. PubMed ID: 25710182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does warm-up have a beneficial effect on 100-m freestyle?
    Neiva HP; Marques MC; Fernandes RJ; Viana JL; Barbosa TM; Marinho DA
    Int J Sports Physiol Perform; 2014 Jan; 9(1):145-50. PubMed ID: 23579194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerobic and Anaerobic Swimming Force Evaluation in One Single Test Session for Young Swimmers.
    de Barros Sousa FA; Rodrigues NA; Messias LHD; Queiroz JB; Manchado-Gobatto FB; Gobatto CA
    Int J Sports Med; 2017 May; 38(5):378-383. PubMed ID: 28255967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of velocity regimens for anaerobic and aerobic power exercises in high-performance swimmers.
    Issurin VB; Kaufman LE; Tenenbaum G
    J Sports Med Phys Fitness; 2001 Dec; 41(4):433-40. PubMed ID: 11687761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ecological validity and application of the session-RPE method for quantifying training loads in swimming.
    Wallace LK; Slattery KM; Coutts AJ
    J Strength Cond Res; 2009 Jan; 23(1):33-8. PubMed ID: 19002069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of aerobic training on inter-arm coordination in highly trained swimmers.
    Schnitzler C; Seifert L; Chollet D; Toussaint H
    Hum Mov Sci; 2014 Feb; 33():43-53. PubMed ID: 24576707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.