These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23449442)

  • 21. Effect of high-frequency electrical stimulation of the auditory nerve in an animal model of cochlear implants.
    Vischer M; Haenggeli A; Zhang J; Pelizzone M; Häusler R; Rouiller EM
    Am J Otol; 1997 Nov; 18(6 Suppl):S27-9. PubMed ID: 9391586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Frequency selectivity of the normal guinea pig cochlea and in experimental hearing loss].
    Tavartkiladze GA; Kharrison RV
    Fiziol Zh SSSR Im I M Sechenova; 1985 Apr; 71(4):461-5. PubMed ID: 3996676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of electrically and acoustically evoked responses in the auditory cortex of the guinea pig: implications for a cochlear prosthesis.
    Meikle MB; Gillette RG; Godley FA
    Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol; 1977; 84(2):183-92. PubMed ID: 898496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Matching the neural adaptation in the rat ventral cochlear nucleus produced by artificial (electric) and acoustic stimulation of the cochlea.
    Loquet G; Pelizzone M; Valentini G; Rouiller EM
    Audiol Neurootol; 2004; 9(3):144-59. PubMed ID: 15084819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of oxidative stress in the susceptibility of noise-impaired cochleae to synaptic loss induced by intracochlear electrical stimulation.
    Zhang C; Li Q; Chen M; Lu T; Min S; Li S
    Neuropharmacology; 2021 Sep; 196():108707. PubMed ID: 34246683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hair cell and neural contributions to the cochlear summating potential.
    Pappa AK; Hutson KA; Scott WC; Wilson JD; Fox KE; Masood MM; Giardina CK; Pulver SH; Grana GD; Askew C; Fitzpatrick DC
    J Neurophysiol; 2019 Jun; 121(6):2163-2180. PubMed ID: 30943095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of electroneural versus electrophonic stimulation on psychoacoustic electric-acoustic masking in cochlear implant users with residual hearing.
    Kipping D; Krüger B; Nogueira W
    Hear Res; 2020 Sep; 395():108036. PubMed ID: 32736202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular recordings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents.
    Brown MC; Nuttall AL; Masta RI
    Science; 1983 Oct; 222(4619):69-72. PubMed ID: 6623058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical stimulation activates two different sites within the guinea pig cochlea.
    Nicolas-Puel C; Durrieu JP; Lenoir M; Tran Ba Huy T; Uziel A; Puel JL
    Hear Res; 1996 Oct; 100(1-2):181-91. PubMed ID: 8922993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological correlates of off-frequency listening.
    Cheatham MA; Dallos P
    Hear Res; 1992 Apr; 59(1):39-45. PubMed ID: 1629045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrically and acoustically evoked brain stem responses in guinea pig.
    Gyo K; Yanagihara N
    Acta Otolaryngol; 1980; 90(1-2):25-31. PubMed ID: 7446077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An experimental study into the acousto-mechanical effects of invading the cochlea.
    Dong W; Cooper NP
    J R Soc Interface; 2006 Aug; 3(9):561-71. PubMed ID: 16849252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurobiology of cochlear inner and outer hair cells: intracellular recordings.
    Dallos P
    Hear Res; 1986; 22():185-98. PubMed ID: 3733539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-tone suppression in inner hair cell responses: correlates of rate suppression in the auditory nerve.
    Cheatham MA; Dallos P
    Hear Res; 1992 Jun; 60(1):1-12. PubMed ID: 1500370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Computational Model of the Electrically or Acoustically Evoked Compound Action Potential in Cochlear Implant Users with Residual Hearing.
    Kipping D; Zhang Y; Nogueira W
    IEEE Trans Biomed Eng; 2024 Jun; PP():. PubMed ID: 38843064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of electrical pulse shape on AVCN unit responses to cochlear stimulation.
    Wiler JA; Clopton BM; Mikhail MA
    Hear Res; 1989 Jun; 39(3):251-61. PubMed ID: 2753830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of electrical stimulation on middle latency response in the guinea pig.
    Cannon SC; Miller JM; Crowther J; Moscow D
    Am J Otolaryngol; 1990; 11(4):251-5. PubMed ID: 2240413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 4-aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions.
    Kirk DL; Yates GK
    Audiol Neurootol; 1998; 3(1):21-39. PubMed ID: 9502539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short-wavelength near infrared stimulation of the inner ear hair cells.
    Xia N; Peng F; Wang X; Zheng XL; Wan XP; Yuan W; Hou WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2633-6. PubMed ID: 25570531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.