BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23449662)

  • 1. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design.
    Khoury M; Wolf A; Debbi EM; Herman A; Haim A
    Foot Ankle Int; 2013 Apr; 34(4):593-8. PubMed ID: 23449662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of center of pressure alteration on the ground reaction force during gait: A statistical model.
    Shaulian H; Solomonow-Avnon D; Herman A; Rozen N; Haim A; Wolf A
    Gait Posture; 2018 Oct; 66():107-113. PubMed ID: 30172216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trunk kinematic, kinetic, and neuro-muscular response to foot center of pressure translation along the medio-lateral foot axis during gait.
    Solomonow-Avnon D; Herman A; Giwnewer U; Rozen N; Elbaz A; Mor A; Wolf A
    J Biomech; 2019 Mar; 86():141-148. PubMed ID: 30777339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-shoe center of pressure: indirect force plate vs. direct insole measurement.
    Debbi EM; Wolf A; Goryachev Y; Yizhar Z; Luger E; Debi R; Haim A
    Foot (Edinb); 2012 Dec; 22(4):269-75. PubMed ID: 22938890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of sagittal center of pressure offset on gait kinematics and kinetics.
    Haim A; Rozen N; Wolf A
    J Biomech; 2010 Mar; 43(5):969-77. PubMed ID: 20047747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of the foot center of pressure trajectory by an unstable shoe design.
    Khoury M; Haim A; Herman A; Rozen N; Wolf A
    J Foot Ankle Res; 2015; 8():67. PubMed ID: 26628923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of center of pressure modulation on knee adduction moment in medial compartment knee osteoarthritis.
    Haim A; Wolf A; Rubin G; Genis Y; Khoury M; Rozen N
    J Orthop Res; 2011 Nov; 29(11):1668-74. PubMed ID: 21491477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of reducing knee adduction moment by shortening of the knee lever arm via medio-lateral manipulation of foot center of pressure: A pilot study.
    Solomonow-Avnon D; Herman A; Wolf A
    J Biomech; 2019 Jan; 83():143-149. PubMed ID: 30527391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical implications of the negative heel rocker sole shoe: gait kinematics and kinetics.
    Myers KA; Long JT; Klein JP; Wertsch JJ; Janisse D; Harris GF
    Gait Posture; 2006 Nov; 24(3):323-30. PubMed ID: 16300949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of knee coronal plane moment via modulation of center of pressure: a prospective gait analysis study.
    Haim A; Rozen N; Dekel S; Halperin N; Wolf A
    J Biomech; 2008 Oct; 41(14):3010-6. PubMed ID: 18805527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects.
    Vieira MF; Sacco Ide C; Nora FG; Rosenbaum D; Lobo da Costa PH
    PLoS One; 2015; 10(8):e0135821. PubMed ID: 26270323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate effect of orthopedic shoe and functional foot orthosis on center of pressure displacement and gait parameters in juvenile flexible flat foot.
    Aboutorabi A; Saeedi H; Kamali M; Farahmand B; Eshraghi A; Dolagh RS
    Prosthet Orthot Int; 2014 Jun; 38(3):218-23. PubMed ID: 23986466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of different footwear characteristics, of a ballet flat pump, on centre of pressure progression and perceived comfort.
    Branthwaite H; Chockalingam N; Greenhalgh A; Chatzistergos P
    Foot (Edinb); 2014 Sep; 24(3):116-22. PubMed ID: 24939663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of heel base size, walking speed, and slope angle on center of pressure trajectory and plantar pressure when wearing high-heeled shoes.
    Luximon Y; Cong Y; Luximon A; Zhang M
    Hum Mov Sci; 2015 Jun; 41():307-19. PubMed ID: 25910862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Center of pressure trajectory during gait: a comparison of four foot positions.
    Lugade V; Kaufman K
    Gait Posture; 2014 Sep; 40(4):719-22. PubMed ID: 25052586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-shoe plantar pressure measurements for patients with knee osteoarthritis: Reliability and effects of lateral heel wedges.
    Leitch KM; Birmingham TB; Jones IC; Giffin JR; Jenkyn TR
    Gait Posture; 2011 Jul; 34(3):391-6. PubMed ID: 21741243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of manipulation of the center of pressure of the foot during gait on the activation patterns of the lower limb musculature.
    Goryachev Y; Debbi EM; Haim A; Wolf A
    J Electromyogr Kinesiol; 2011 Apr; 21(2):333-9. PubMed ID: 21215655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle muscles drive mediolateral center of pressure control to ensure stable steady state gait.
    van Leeuwen AM; van Dieën JH; Daffertshofer A; Bruijn SM
    Sci Rep; 2021 Nov; 11(1):21481. PubMed ID: 34728667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between running speed and initial foot contact patterns.
    Breine B; Malcolm P; Frederick EC; De Clercq D
    Med Sci Sports Exerc; 2014 Aug; 46(8):1595-603. PubMed ID: 24504424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of frontal-plane hip joint reaction force via medio-lateral foot center of pressure manipulation: a pilot study.
    Solomonow-Avnon D; Wolf A; Herman A; Rozen N; Haim A
    J Orthop Res; 2015 Feb; 33(2):261-9. PubMed ID: 25256253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.