These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 23449933)
1. Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations. Sato M; Larsen JE; Lee W; Sun H; Shames DS; Dalvi MP; Ramirez RD; Tang H; DiMaio JM; Gao B; Xie Y; Wistuba II; Gazdar AF; Shay JW; Minna JD Mol Cancer Res; 2013 Jun; 11(6):638-50. PubMed ID: 23449933 [TBL] [Abstract][Full Text] [Related]
2. Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Sato M; Vaughan MB; Girard L; Peyton M; Lee W; Shames DS; Ramirez RD; Sunaga N; Gazdar AF; Shay JW; Minna JD Cancer Res; 2006 Feb; 66(4):2116-28. PubMed ID: 16489012 [TBL] [Abstract][Full Text] [Related]
3. Resistance to mutant KRAS Muraki N; Yamada M; Doki H; Nakai R; Komeda K; Goto D; Kawabe N; Matsuoka K; Matsushima M; Kawabe T; Tanaka I; Morise M; Shay JW; Minna JD; Sato M Exp Cell Res; 2022 May; 414(1):113053. PubMed ID: 35149086 [TBL] [Abstract][Full Text] [Related]
5. Down-regulation of DUSP6 expression in lung cancer: its mechanism and potential role in carcinogenesis. Okudela K; Yazawa T; Woo T; Sakaeda M; Ishii J; Mitsui H; Shimoyamada H; Sato H; Tajiri M; Ogawa N; Masuda M; Takahashi T; Sugimura H; Kitamura H Am J Pathol; 2009 Aug; 175(2):867-81. PubMed ID: 19608870 [TBL] [Abstract][Full Text] [Related]
6. Label-free quantitative proteomics and N-glycoproteomics analysis of KRAS-activated human bronchial epithelial cells. Sudhir PR; Chen CH; Pavana Kumari M; Wang MJ; Tsou CC; Sung TY; Chen JY; Chen CH Mol Cell Proteomics; 2012 Oct; 11(10):901-15. PubMed ID: 22761399 [TBL] [Abstract][Full Text] [Related]
7. A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes. Inagawa Y; Yamada K; Yugawa T; Ohno S; Hiraoka N; Esaki M; Shibata T; Aoki K; Saya H; Kiyono T Carcinogenesis; 2014 Aug; 35(8):1840-6. PubMed ID: 24858378 [TBL] [Abstract][Full Text] [Related]
9. Molecular requirements for transformation of fallopian tube epithelial cells into serous carcinoma. Jazaeri AA; Bryant JL; Park H; Li H; Dahiya N; Stoler MH; Ferriss JS; Dutta A Neoplasia; 2011 Oct; 13(10):899-911. PubMed ID: 22028616 [TBL] [Abstract][Full Text] [Related]
10. BRAF Muraki N; Kawabe N; Ohashi A; Umeda K; Katsuda M; Tomatsu A; Yoshida M; Komeda K; Minna JD; Tanaka I; Morise M; Matsushima M; Matsui Y; Kawabe T; Sato M Exp Cell Res; 2024 Jun; 439(1):114057. PubMed ID: 38679315 [TBL] [Abstract][Full Text] [Related]
11. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. Kim J; Sato M; Choi JW; Kim HW; Yeh BI; Larsen JE; Minna JD; Cha JH; Jeong Y PLoS One; 2015; 10(8):e0134842. PubMed ID: 26244663 [TBL] [Abstract][Full Text] [Related]
13. Oncogenic transformation of human ovarian surface epithelial cells with defined cellular oncogenes. Sasaki R; Narisawa-Saito M; Yugawa T; Fujita M; Tashiro H; Katabuchi H; Kiyono T Carcinogenesis; 2009 Mar; 30(3):423-31. PubMed ID: 19126650 [TBL] [Abstract][Full Text] [Related]
14. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Ramirez RD; Sheridan S; Girard L; Sato M; Kim Y; Pollack J; Peyton M; Zou Y; Kurie JM; Dimaio JM; Milchgrub S; Smith AL; Souza RF; Gilbey L; Zhang X; Gandia K; Vaughan MB; Wright WE; Gazdar AF; Shay JW; Minna JD Cancer Res; 2004 Dec; 64(24):9027-34. PubMed ID: 15604268 [TBL] [Abstract][Full Text] [Related]
15. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Lin S; Yang J; Elkahloun AG; Bandyopadhyay A; Wang L; Cornell JE; Yeh IT; Agyin J; Tomlinson G; Sun LZ Mol Biol Cell; 2012 Apr; 23(8):1569-81. PubMed ID: 22357622 [TBL] [Abstract][Full Text] [Related]
16. Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. Vicent S; Chen R; Sayles LC; Lin C; Walker RG; Gillespie AK; Subramanian A; Hinkle G; Yang X; Saif S; Root DE; Huff V; Hahn WC; Sweet-Cordero EA J Clin Invest; 2010 Nov; 120(11):3940-52. PubMed ID: 20972333 [TBL] [Abstract][Full Text] [Related]
17. Chronic Hexavalent Chromium Exposure Induces Cancer Stem Cell-Like Property and Tumorigenesis by Increasing c-Myc Expression. Wang Z; Lin HP; Li Y; Tao H; Yang P; Xie J; Maddy D; Kondo K; Yang C Toxicol Sci; 2019 Dec; 172(2):252-264. PubMed ID: 31504995 [TBL] [Abstract][Full Text] [Related]
18. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Yang L; Zhou Y; Li Y; Zhou J; Wu Y; Cui Y; Yang G; Hong Y Cancer Lett; 2015 Feb; 357(2):520-6. PubMed ID: 25499080 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of breast cancer metastasis suppressor 1 promotes a mesenchymal phenotype in lung epithelial cells that express oncogenic K-RasV12 and loss of p53. Hall EH; Liu Y; Xiao A; Shock L; Brautigan DL; Mayo MW; Adusumilli PS; Jones DR PLoS One; 2014; 9(4):e95869. PubMed ID: 24763730 [TBL] [Abstract][Full Text] [Related]
20. Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells. Junk DJ; Cipriano R; Stampfer M; Jackson MW PLoS One; 2013; 8(2):e53776. PubMed ID: 23390492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]