BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23450065)

  • 1. Mature microsatellites: mechanisms underlying dinucleotide microsatellite mutational biases in human cells.
    Baptiste BA; Ananda G; Strubczewski N; Lutzkanin A; Khoo SJ; Srikanth A; Kim N; Makova KD; Krasilnikova MM; Eckert KA
    G3 (Bethesda); 2013 Mar; 3(3):451-63. PubMed ID: 23450065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misalignment-mediated DNA polymerase beta mutations: comparison of microsatellite and frame-shift error rates using a forward mutation assay.
    Eckert KA; Mowery A; Hile SE
    Biochemistry; 2002 Aug; 41(33):10490-8. PubMed ID: 12173936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetranucleotide Microsatellite Mutational Behavior Assessed in Real Time: Implications for Future Microsatellite Panels.
    Raeker MÖ; Pierre-Charles J; Carethers JM
    Cell Mol Gastroenterol Hepatol; 2020; 9(4):689-704. PubMed ID: 31982570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells.
    Yamada NA; Smith GA; Castro A; Roques CN; Boyer JC; Farber RA
    Mutat Res; 2002 Feb; 499(2):213-25. PubMed ID: 11827714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Every microsatellite is different: Intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome.
    Eckert KA; Hile SE
    Mol Carcinog; 2009 Apr; 48(4):379-88. PubMed ID: 19306292
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Villahermosa D; Christensen O; Knapp K; Fleck O
    G3 (Bethesda); 2017 May; 7(5):1463-1473. PubMed ID: 28341698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human postmeiotic segregation 2 exhibits biased repair at tetranucleotide microsatellite sequences.
    Shah SN; Eckert KA
    Cancer Res; 2009 Feb; 69(3):1143-9. PubMed ID: 19155293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli DNA polymerase IV contributes to spontaneous mutagenesis at coding sequences but not microsatellite alleles.
    Jacob KD; Eckert KA
    Mutat Res; 2007 Jun; 619(1-2):93-103. PubMed ID: 17397877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The in vitro fidelity of yeast DNA polymerase δ and polymerase ε holoenzymes during dinucleotide microsatellite DNA synthesis.
    Abdulovic AL; Hile SE; Kunkel TA; Eckert KA
    DNA Repair (Amst); 2011 May; 10(5):497-505. PubMed ID: 21429821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation rates of TGFBR2 and ACVR2 coding microsatellites in human cells with defective DNA mismatch repair.
    Chung H; Young DJ; Lopez CG; Le TA; Lee JK; Ream-Robinson D; Huang SC; Carethers JM
    PLoS One; 2008; 3(10):e3463. PubMed ID: 18941508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the DNA mismatch repair system removes 1-nucleotide Okazaki fragment flaps.
    Kadyrova LY; Dahal BK; Kadyrov FA
    J Biol Chem; 2015 Oct; 290(40):24051-65. PubMed ID: 26224637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mismatch repair pathway: molecules, functions, and role in colorectal carcinogenesis.
    Sameer AS; Nissar S; Fatima K
    Eur J Cancer Prev; 2014 Jul; 23(4):246-57. PubMed ID: 24614649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mismatch repair is a double-edged sword in the battle against microsatellite instability.
    Miller CJ; Usdin K
    Expert Rev Mol Med; 2022 Sep; 24():e32. PubMed ID: 36059110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation rate and specificity analysis of tetranucleotide microsatellite DNA alleles in somatic human cells.
    Eckert KA; Yan G; Hile SE
    Mol Carcinog; 2002 Jul; 34(3):140-50. PubMed ID: 12112308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats.
    Kelkar YD; Strubczewski N; Hile SE; Chiaromonte F; Eckert KA; Makova KD
    Genome Biol Evol; 2010; 2():620-35. PubMed ID: 20668018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatic mutation rates and specificities at TC/AG and GT/CA microsatellite sequences in nontumorigenic human lymphoblastoid cells.
    Hile SE; Yan G; Eckert KA
    Cancer Res; 2000 Mar; 60(6):1698-703. PubMed ID: 10749142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleotide composition of microsatellites impacts both replication fidelity and mismatch repair in human colorectal cells.
    Campregher C; Scharl T; Nemeth M; Honeder C; Jascur T; Boland CR; Gasche C
    Hum Mol Genet; 2010 Jul; 19(13):2648-57. PubMed ID: 20421367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic evidence that both dNTP-stabilized and strand slippage mechanisms may dictate DNA polymerase errors within mononucleotide microsatellites.
    Baptiste BA; Jacob KD; Eckert KA
    DNA Repair (Amst); 2015 May; 29():91-100. PubMed ID: 25758780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis.
    Eckert KA; Yan G
    Nucleic Acids Res; 2000 Jul; 28(14):2831-8. PubMed ID: 10908342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-dependent effect of interruptions on microsatellite mutation rate in mismatch repair-deficient human cells.
    Boyer JC; Hawk JD; Stefanovic L; Farber RA
    Mutat Res; 2008 Apr; 640(1-2):89-96. PubMed ID: 18242644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.