These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2345008)

  • 1. Modulation of conduction at points of axonal bifurcation by applied electric fields.
    Krauthamer V
    IEEE Trans Biomed Eng; 1990 May; 37(5):515-9. PubMed ID: 2345008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech.
    Van Essen DC
    J Physiol; 1973 May; 230(3):509-34. PubMed ID: 4717151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct current electrical conduction block of peripheral nerve.
    Bhadra N; Kilgore KL
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):313-24. PubMed ID: 15473193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correspondence between the location of evoked potential generators and sites of maximal sensitivity to stimulation.
    Stecker MM
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1619-21. PubMed ID: 16189977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser microbeam axotomy and conduction block show that electrical transmission at a central synapse is distributed at multiple contacts.
    Gu XN; Macagno ER; Muller KJ
    J Neurobiol; 1989 Jul; 20(5):422-34. PubMed ID: 2545814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitations on impulse conduction at the branch point of afferent axons in frog dorsal root ganglion.
    Stoney SD
    Exp Brain Res; 1990; 80(3):512-24. PubMed ID: 2387351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech.
    Yau KW
    J Physiol; 1976 Dec; 263(3):513-38. PubMed ID: 1018277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational model of touch sensory cells (T Cells) of the leech: role of the afterhyperpolarization (AHP) in activity-dependent conduction failure.
    Cataldo E; Brunelli M; Byrne JH; Av-Ron E; Cai Y; Baxter DA
    J Comput Neurosci; 2005; 18(1):5-24. PubMed ID: 15789166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro.
    Jensen AL; Durand DM
    J Neural Eng; 2007 Jun; 4(2):1-16. PubMed ID: 17409475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus.
    Debanne D; Guérineau NC; Gähwiler BH; Thompson SM
    Nature; 1997 Sep; 389(6648):286-9. PubMed ID: 9305843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conduction in bundles of demyelinated nerve fibers: computer simulation.
    Reutskiy S; Rossoni E; Tirozzi B
    Biol Cybern; 2003 Dec; 89(6):439-48. PubMed ID: 14673655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pyrethroid molecules on rat nerves in vitro: potential to reverse temperature-sensitive conduction block of demyelinated peripheral axons.
    Lees G
    Br J Pharmacol; 1998 Feb; 123(3):487-96. PubMed ID: 9504390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning.
    Baccus SA; Burrell BD; Sahley CL; Muller KJ
    J Neurophysiol; 2000 Mar; 83(3):1693-700. PubMed ID: 10712489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural inhomogeneities differentially modulate action currents and population spikes initiated in the axon or dendrites.
    López-Aguado L; Ibarz JM; Varona P; Herreras O
    J Neurophysiol; 2002 Nov; 88(5):2809-20. PubMed ID: 12424314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
    McIntyre CC; Grill WM; Sherman DL; Thakor NV
    J Neurophysiol; 2004 Apr; 91(4):1457-69. PubMed ID: 14668299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal speeding: shaping synaptic potentials in small neurons by the axonal membrane compartment.
    Mejia-Gervacio S; Collin T; Pouzat C; Tan YP; Llano I; Marty A
    Neuron; 2007 Mar; 53(6):843-55. PubMed ID: 17359919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conduction latency along CA3 hippocampal axons from rat.
    Soleng AF; Raastad M; Andersen P
    Hippocampus; 2003; 13(8):953-61. PubMed ID: 14750657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflections in threshold electrotonus to depolarizing currents in sensory axons.
    Burke D; Howells J; Trevillion L; Kiernan MC; Bostock H
    Muscle Nerve; 2007 Dec; 36(6):849-52. PubMed ID: 17654562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane properties of glossopharyngeal sensory neurons in the petrosal ganglion of the cat.
    Morales A; Ivorra I; Gallego R
    Brain Res; 1987 Jan; 401(2):340-6. PubMed ID: 3815100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of a constant magnetic field on nervous tissues: II. Voltage-clamp studies.
    Schwartz JL
    IEEE Trans Biomed Eng; 1979 Apr; 26(4):238-43. PubMed ID: 437805
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.