These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23450126)

  • 1. Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces.
    Elfwing S; Uchibe E; Doya K
    Front Neurorobot; 2013; 7():3. PubMed ID: 23450126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2016 Dec; 84():17-27. PubMed ID: 27639720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expected energy-based restricted Boltzmann machine for classification.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2015 Apr; 64():29-38. PubMed ID: 25318375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kernel dynamic policy programming: Applicable reinforcement learning to robot systems with high dimensional states.
    Cui Y; Matsubara T; Sugimoto K
    Neural Netw; 2017 Oct; 94():13-23. PubMed ID: 28732231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.
    Kinjo K; Uchibe E; Doya K
    Front Neurorobot; 2013; 7():7. PubMed ID: 23576983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pseudo-softmax function for hardware-based high speed image classification.
    Cardarilli GC; Di Nunzio L; Fazzolari R; Giardino D; Nannarelli A; Re M; Spanò S
    Sci Rep; 2021 Jul; 11(1):15307. PubMed ID: 34321514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Critical Period for Robust Curriculum-Based Deep Reinforcement Learning of Sequential Action in a Robot Arm.
    de Kleijn R; Sen D; Kachergis G
    Top Cogn Sci; 2022 Apr; 14(2):311-326. PubMed ID: 35005844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient learning procedure for deep Boltzmann machines.
    Salakhutdinov R; Hinton G
    Neural Comput; 2012 Aug; 24(8):1967-2006. PubMed ID: 22509963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.
    Tamosiunaite M; Asfour T; Wörgötter F
    Biol Cybern; 2009 Mar; 100(3):249-60. PubMed ID: 19229556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning.
    Arleo A; Smeraldi F; Gerstner W
    IEEE Trans Neural Netw; 2004 May; 15(3):639-52. PubMed ID: 15384552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial Policy-Based Reinforcement Learning for Anatomical Landmark Localization in 3D Medical Images.
    Abdullah Al W; Yun ID
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1245-1255. PubMed ID: 31603816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive deep Q-learning strategy for handwritten digit recognition.
    Qiao J; Wang G; Li W; Chen M
    Neural Netw; 2018 Nov; 107():61-71. PubMed ID: 29735249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of Compositional Representations in Restricted Boltzmann Machines.
    Tubiana J; Monasson R
    Phys Rev Lett; 2017 Mar; 118(13):138301. PubMed ID: 28409983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2018 Nov; 107():3-11. PubMed ID: 29395652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.
    Wang Y; Wang F; Xu K; Zhang Q; Zhang S; Zheng X
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):458-67. PubMed ID: 25073173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive internal state space construction method for reinforcement learning of a real-world agent.
    Samejima K; Omori T
    Neural Netw; 1999 Oct; 12(7-8):1143-1155. PubMed ID: 12662650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Robot Motor Learning with Negatively Valenced Reinforcement Signals.
    Navarro-Guerrero N; Lowe RJ; Wermter S
    Front Neurorobot; 2017; 11():10. PubMed ID: 28420976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.