BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23450369)

  • 1. Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue.
    Li Y; Pan M; Li Y; Huang Y; Guo Q
    Org Biomol Chem; 2013 Apr; 11(16):2624-9. PubMed ID: 23450369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo.
    Katayama H; Nozawa K; Nureki O; Nakahara Y; Hojo H
    Biosci Biotechnol Biochem; 2012; 76(1):205-8. PubMed ID: 22232266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing bioorthogonal functionalities into proteins in living cells.
    Hao Z; Hong S; Chen X; Chen PR
    Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
    Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry.
    Nguyen DP; Lusic H; Neumann H; Kapadnis PB; Deiters A; Chin JW
    J Am Chem Soc; 2009 Jul; 131(25):8720-1. PubMed ID: 19514718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetically encoded photocaged Nepsilon-methyl-L-lysine.
    Wang YS; Wu B; Wang Z; Huang Y; Wan W; Russell WK; Pai PJ; Moe YN; Russell DH; Liu WR
    Mol Biosyst; 2010 Sep; 6(9):1557-60. PubMed ID: 20711534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to site-specifically introduce methyllysine into proteins in E. coli.
    Ai HW; Lee JW; Schultz PG
    Chem Commun (Camb); 2010 Aug; 46(30):5506-8. PubMed ID: 20571694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation.
    Nguyen DP; Elliott T; Holt M; Muir TW; Chin JW
    J Am Chem Soc; 2011 Aug; 133(30):11418-21. PubMed ID: 21736333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic encoding of the post-translational modification 2-hydroxyisobutyryl-lysine.
    Knight WA; Cropp TA
    Org Biomol Chem; 2015 Jun; 13(23):6479-81. PubMed ID: 25999185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic incorporation of a 2-naphthol group into proteins for site-specific azo coupling.
    Chen S; Tsao ML
    Bioconjug Chem; 2013 Oct; 24(10):1645-9. PubMed ID: 24073629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A readily synthesized cyclic pyrrolysine analogue for site-specific protein "click" labeling.
    Hao Z; Song Y; Lin S; Yang M; Liang Y; Wang J; Chen PR
    Chem Commun (Camb); 2011 Apr; 47(15):4502-4. PubMed ID: 21387054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Incorporation of ε-N-2-Hydroxyisobutyryl-lysine into Recombinant Histones.
    Xiao H; Xuan W; Shao S; Liu T; Schultz PG
    ACS Chem Biol; 2015 Jul; 10(7):1599-603. PubMed ID: 25909834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic incorporation of twelve meta-substituted phenylalanine derivatives using a single pyrrolysyl-tRNA synthetase mutant.
    Wang YS; Fang X; Chen HY; Wu B; Wang ZU; Hilty C; Liu WR
    ACS Chem Biol; 2013 Feb; 8(2):405-15. PubMed ID: 23138887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo.
    Blight SK; Larue RC; Mahapatra A; Longstaff DG; Chang E; Zhao G; Kang PT; Green-Church KB; Chan MK; Krzycki JA
    Nature; 2004 Sep; 431(7006):333-5. PubMed ID: 15329732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
    Polycarpo CR; Herring S; Bérubé A; Wood JL; Söll D; Ambrogelly A
    FEBS Lett; 2006 Dec; 580(28-29):6695-700. PubMed ID: 17126325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition.
    Ikeuchi Y; Soma A; Ote T; Kato J; Sekine Y; Suzuki T
    Mol Cell; 2005 Jul; 19(2):235-46. PubMed ID: 16039592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into incorporation of norbornene amino acids for click modification of proteins.
    Schneider S; Gattner MJ; Vrabel M; Flügel V; López-Carrillo V; Prill S; Carell T
    Chembiochem; 2013 Nov; 14(16):2114-8. PubMed ID: 24027216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase.
    Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S
    J Mol Biol; 2008 May; 378(3):634-52. PubMed ID: 18387634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Versatile Approach for Site-Specific Lysine Acylation in Proteins.
    Wang ZA; Kurra Y; Wang X; Zeng Y; Lee YJ; Sharma V; Lin H; Dai SY; Liu WR
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1643-1647. PubMed ID: 28042700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.