These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 2345075)
1. Near-monochromatic X-ray beams produced by the free electron laser and Compton backscatter. Carroll FE; Waters JW; Price RR; Brau CA; Roos CF; Tolk NH; Pickens DR; Stephens WH Invest Radiol; 1990 May; 25(5):465-71. PubMed ID: 2345075 [TBL] [Abstract][Full Text] [Related]
2. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons. Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899 [TBL] [Abstract][Full Text] [Related]
3. Optimization of radiography applications using x-ray beams emitted by compact accelerators. Part I. Monte Carlo study of the hard x-ray spectrum. Marziani M; Taibi A; Di Domenico G; Gambaccini M Med Phys; 2009 Oct; 36(10):4683-701. PubMed ID: 19928100 [TBL] [Abstract][Full Text] [Related]
4. Use of capillary optics as a beam intensifier for a Compton x-ray source. Tompkins PA; Abreu CC; Carroll FE; Xiao QF; MacDonald CA Med Phys; 1994 Nov; 21(11):1777-84. PubMed ID: 7891640 [TBL] [Abstract][Full Text] [Related]
5. BriXS, a new X-ray inverse Compton source for medical applications. Cardarelli P; Bacci A; Calandrino R; Canella F; Castriconi R; Cialdi S; Del Vecchio A; di Franco F; Drebot I; Gambaccini M; Giannotti D; Loria A; Mettivier G; Paternò G; Petrillo V; Rossetti Conti M; Russo P; Sarno A; Suerra E; Taibi A; Serafini L Phys Med; 2020 Sep; 77():127-137. PubMed ID: 32829101 [TBL] [Abstract][Full Text] [Related]
6. An inverse free electron laser acceleration-driven Compton scattering X-ray source. Gadjev I; Sudar N; Babzien M; Duris J; Hoang P; Fedurin M; Kusche K; Malone R; Musumeci P; Palmer M; Pogorelsky I; Polyanskiy M; Sakai Y; Swinson C; Williams O; Rosenzweig JB Sci Rep; 2019 Jan; 9(1):532. PubMed ID: 30679471 [TBL] [Abstract][Full Text] [Related]
7. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering. Yu C; Qi R; Wang W; Liu J; Li W; Wang C; Zhang Z; Liu J; Qin Z; Fang M; Feng K; Wu Y; Tian Y; Xu Y; Wu F; Leng Y; Weng X; Wang J; Wei F; Yi Y; Song Z; Li R; Xu Z Sci Rep; 2016 Jul; 6():29518. PubMed ID: 27405540 [TBL] [Abstract][Full Text] [Related]
8. Study on X-ray enhancement in Laser-Compton scattering for auger therapy. Koshiba Y; Morita R; Yamashita K; Washio M; Sakaue K; Higashiguchi T; Urakawa J Int J Radiat Biol; 2023; 99(1):77-81. PubMed ID: 32835574 [TBL] [Abstract][Full Text] [Related]
9. On some methods of x-ray production from relativistic electron beams. Pellegrini C J Xray Sci Technol; 1994 Jan; 4(4):275-89. PubMed ID: 21307465 [TBL] [Abstract][Full Text] [Related]
10. The Compton backscattering process and radiotherapy. Weeks KJ; Litvinenko VN; Madey JM Med Phys; 1997 Mar; 24(3):417-23. PubMed ID: 9089593 [TBL] [Abstract][Full Text] [Related]
11. Quasi-monochromatic x-rays for diagnostic radiology. Baldelli P; Taibi A; Tuffanelli A; Gambaccini M Phys Med Biol; 2003 Nov; 48(22):3653-65. PubMed ID: 14680265 [TBL] [Abstract][Full Text] [Related]
12. Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation. Schnell M; Sävert A; Landgraf B; Reuter M; Nicolai M; Jäckel O; Peth C; Thiele T; Jansen O; Pukhov A; Willi O; Kaluza MC; Spielmann C Phys Rev Lett; 2012 Feb; 108(7):075001. PubMed ID: 22401215 [TBL] [Abstract][Full Text] [Related]
13. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging. Sugiro FR; Li D; MacDonald CA Med Phys; 2004 Dec; 31(12):3288-97. PubMed ID: 15651611 [TBL] [Abstract][Full Text] [Related]
14. Calculation of x-ray spectra emerging from an x-ray tube. Part I. electron penetration characteristics in x-ray targets. Poludniowski GG; Evans PM Med Phys; 2007 Jun; 34(6):2164-74. PubMed ID: 17654919 [TBL] [Abstract][Full Text] [Related]
15. Generation of "soft x-rays" by using the free electron laser as a proposed means of diagnosing and treating breast cancer. Carroll FE Lasers Surg Med; 1991; 11(1):72-8. PubMed ID: 1997783 [TBL] [Abstract][Full Text] [Related]
16. An iterative three-dimensional electron density imaging algorithm using uncollimated compton scattered x rays from a polyenergetic primary pencil beam. Van Uytven E; Pistorius S; Gordon R Med Phys; 2007 Jan; 34(1):256-65. PubMed ID: 17278511 [TBL] [Abstract][Full Text] [Related]
17. Monochromatic x-rays in digital mammography. Lawaczeck R; Arkadiev V; Diekmann F; Krumrey M Invest Radiol; 2005 Jan; 40(1):33-9. PubMed ID: 15597018 [TBL] [Abstract][Full Text] [Related]
18. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons. Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD Phys Med Biol; 2005 Jan; 50(1):N1-10. PubMed ID: 15715431 [TBL] [Abstract][Full Text] [Related]
19. 2D monochromatic x-ray imaging for beam monitoring of an x-ray free electron laser and a high-power femtosecond laser. Sawada H; Trzaska J; Curry CB; Gauthier M; Fletcher LB; Jiang S; Lee HJ; Galtier EC; Cunningham E; Dyer G; Daykin TS; Chen L; Salinas C; Glenn GD; Frost M; Glenzer SH; Ping Y; Kemp AJ; Sentoku Y Rev Sci Instrum; 2021 Jan; 92(1):013510. PubMed ID: 33514225 [TBL] [Abstract][Full Text] [Related]
20. Proposal for an x-ray free electron laser oscillator with intermediate energy electron beam. Dai J; Deng H; Dai Z Phys Rev Lett; 2012 Jan; 108(3):034802. PubMed ID: 22400748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]