BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23450784)

  • 1. Silica-based branched hollow microfibers as a biomimetic extracellular matrix for promoting tumor cell growth in vitro and in vivo.
    Qiu P; Qu X; Brackett DJ; Lerner MR; Li D; Mao C
    Adv Mater; 2013 May; 25(17):2492-6. PubMed ID: 23450784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional extracellular matrix scaffolds by microfluidic fabrication for long-term spontaneously contracted cardiomyocyte culture.
    Mei JC; Wu AY; Wu PC; Cheng NC; Tsai WB; Yu J
    Tissue Eng Part A; 2014 Nov; 20(21-22):2931-41. PubMed ID: 24851797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of cell-biomaterial anchorage for tissue regeneration.
    Leal-Egaña A; Díaz-Cuenca A; Boccaccini AR
    Adv Mater; 2013 Aug; 25(29):4049-57. PubMed ID: 24063035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of 2D and 3D constructs from reconstituted decellularized tissue extracellular matrices.
    Takeda YS; Xu Q
    J Biomed Nanotechnol; 2014 Dec; 10(12):3631-7. PubMed ID: 26000376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D.
    Lin L; Marchant RE; Zhu J; Kottke-Marchant K
    Acta Biomater; 2014 Dec; 10(12):5106-5115. PubMed ID: 25173839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.
    Muerza-Cascante ML; Shokoohmand A; Khosrotehrani K; Haylock D; Dalton PD; Hutmacher DW; Loessner D
    Acta Biomater; 2017 Apr; 52():145-158. PubMed ID: 28017869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of fibrin into a collagen-glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction.
    Brougham CM; Levingstone TJ; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Acta Biomater; 2015 Oct; 26():205-14. PubMed ID: 26297884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bilayered hybrid microfibrous PLGA--acellular matrix scaffold for hollow organ tissue engineering.
    Horst M; Madduri S; Milleret V; Sulser T; Gobet R; Eberli D
    Biomaterials; 2013 Feb; 34(5):1537-45. PubMed ID: 23177021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic angle-ply multi-lamellar scaffold for annulus fibrosus tissue engineering.
    Zhang T; Du L; Zhao J; Ding J; Zhang P; Wang L; Xu B
    J Mater Sci Mater Med; 2020 Jul; 31(8):67. PubMed ID: 32705351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications.
    Dunne LW; Iyyanki T; Hubenak J; Mathur AB
    Acta Biomater; 2014 Aug; 10(8):3630-40. PubMed ID: 24821141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds.
    Lü WD; Sun RF; Hu YR; Lu JR; Gu L; Liu ZG; Lei GY; Qiang Z; Cai L
    Acta Biomater; 2018 Apr; 71():460-473. PubMed ID: 29555461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oriented matrix promotes directional tubulogenesis.
    Soucy PA; Hoh M; Heinz W; Hoh J; Romer L
    Acta Biomater; 2015 Jan; 11():264-73. PubMed ID: 25219769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K; Li R; Jiang W; Sun Y; Li H
    Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines.
    Campbell JJ; Husmann A; Hume RD; Watson CJ; Cameron RE
    Biomaterials; 2017 Jan; 114():34-43. PubMed ID: 27838472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering.
    Zhu C; Ma X; Xian L; Zhou Y; Fan D
    Biomed Mater Eng; 2014; 24(6):1999-2005. PubMed ID: 25226896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Model of Tumor Microenvironment on Microfluidic Platform.
    Chung M; Ahn J; Son K; Kim S; Jeon NL
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28544639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications.
    Girão AF; Semitela Â; Pereira AL; Completo A; Marques PAAP
    J Mater Sci Mater Med; 2020 Jul; 31(8):69. PubMed ID: 32705408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering.
    Stoppel WL; Hu D; Domian IJ; Kaplan DL; Black LD
    Biomed Mater; 2015 Mar; 10(3):034105. PubMed ID: 25826196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.