These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23450803)

  • 41. Pd/C(en) catalyzed chemoselective hydrogenation in the presence of aryl nitriles.
    Maegawa T; Fujita Y; Sakurai A; Akashi A; Sato M; Oono K; Sajiki H
    Chem Pharm Bull (Tokyo); 2007 May; 55(5):837-9. PubMed ID: 17473483
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Primary amines as directing groups in the Ru-catalyzed synthesis of isoquinolines, benzoisoquinolines, and thienopyridines.
    Villuendas P; Urriolabeitia EP
    J Org Chem; 2013 Jun; 78(11):5254-63. PubMed ID: 23650873
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ruthenium-catalyzed cycloaddition of 1,6-diynes and nitriles under mild conditions: role of the coordinating group of nitriles.
    Yamamoto Y; Kinpara K; Ogawa R; Nishiyama H; Itoh K
    Chemistry; 2006 Jul; 12(21):5618-31. PubMed ID: 16755621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A convenient synthesis of 4-alkyl-5-aminoisoxazoles.
    Bourbeau MP; Rider JT
    Org Lett; 2006 Aug; 8(17):3679-80. PubMed ID: 16898790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An efficient approach to pyrazolo[5,1-a]isoquinolin-2-amines via a silver(I)-catalyzed three-component reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, and nitrile.
    Yu X; Yang Q; Lou H; Peng Y; Wu J
    Org Biomol Chem; 2011 Oct; 9(20):7033-7. PubMed ID: 21814677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacial hydrogenation and deamination of nitriles to selectively synthesize tertiary amines.
    Lu S; Li C; Wang J; Pan Y; Cao X; Gu H
    Chem Commun (Camb); 2014 Oct; 50(76):11110-3. PubMed ID: 25110925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines.
    Arachchige PTK; Lee H; Yi CS
    J Org Chem; 2018 May; 83(9):4932-4947. PubMed ID: 29665681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ruthenium-catalyzed reductive coupling of 1,3-enynes and aldehydes by transfer hydrogenation: anti-diastereoselective carbonyl propargylation.
    Geary LM; Leung JC; Krische MJ
    Chemistry; 2012 Dec; 18(52):16823-7. PubMed ID: 23147989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron(II)-bis(isonitrile) complexes: novel catalysts in asymmetric transfer hydrogenations of aromatic and heteroaromatic ketones.
    Naik A; Maji T; Reiser O
    Chem Commun (Camb); 2010 Jul; 46(25):4475-7. PubMed ID: 20485837
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Consecutive intermolecular reductive hydroamination: cooperative transition-metal and chiral Brønsted acid catalysis.
    Fleischer S; Werkmeister S; Zhou S; Junge K; Beller M
    Chemistry; 2012 Jul; 18(29):9005-10. PubMed ID: 22707210
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3 d Transition Metal-Catalyzed Hydrogenation of Nitriles and Alkynes.
    Sharma DM; Punji B
    Chem Asian J; 2020 Mar; 15(6):690-708. PubMed ID: 32030877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A general ruthenium-catalyzed synthesis of aromatic amines.
    Hollmann D; Bähn S; Tillack A; Beller M
    Angew Chem Int Ed Engl; 2007; 46(43):8291-4. PubMed ID: 17890660
    [No Abstract]   [Full Text] [Related]  

  • 53. Hydration of Nitriles Catalyzed by Ruthenium Complexes: Role of Dihydrogen Bonding Interactions in Promoting Base-Free Catalysis.
    Yadav S; Gupta R
    Inorg Chem; 2022 Oct; 61(39):15463-15474. PubMed ID: 36137300
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ruthenium-catalyzed oxidative cyanation of tertiary amines with hydrogen peroxide and sodium cyanide.
    Murahashi S; Komiya N; Terai H
    Angew Chem Int Ed Engl; 2005 Oct; 44(42):6931-3. PubMed ID: 16193527
    [No Abstract]   [Full Text] [Related]  

  • 55. Copper-catalyzed coupling of tertiary aliphatic amines with terminal alkynes to propargylamines via C-H activation.
    Niu M; Yin Z; Fu H; Jiang Y; Zhao Y
    J Org Chem; 2008 May; 73(10):3961-3. PubMed ID: 18407687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reductions of aliphatic and aromatic nitriles to primary amines with diisopropylaminoborane.
    Haddenham D; Pasumansky L; DeSoto J; Eagon S; Singaram B
    J Org Chem; 2009 Mar; 74(5):1964-70. PubMed ID: 19191712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.
    Li Y; Topf C; Cui X; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5196-200. PubMed ID: 25728921
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.
    Venkatesan S; Kumar AS; Lee JF; Chan TS; Zen JM
    Chemistry; 2012 May; 18(20):6147-51. PubMed ID: 22489045
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of stable phosphomide ligands and their use in Ru-catalyzed hydrogenations of bicarbonate and related substrates.
    Gowrisankar S; Federsel C; Neumann H; Ziebart C; Jackstell R; Spannenberg A; Beller M
    ChemSusChem; 2013 Jan; 6(1):85-91. PubMed ID: 23281333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic isotope effect evidence for a concerted hydrogen transfer mechanism in transfer hydrogenations catalyzed by [p-(Me2CH)C6H4Me]Ru- (NHCHPhCHPhNSO2C6H4-p-CH3).
    Casey CP; Johnson JB
    J Org Chem; 2003 Mar; 68(5):1998-2001. PubMed ID: 12608822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.