These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23451140)

  • 1. A systems-level approach for investigating Pseudomonas aeruginosa biofilm formation.
    Xu Z; Fang X; Wood TK; Huang ZJ
    PLoS One; 2013; 8(2):e57050. PubMed ID: 23451140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated Modeling and Experimental Approach to Study the Influence of Environmental Nutrients on Biofilm Formation of Pseudomonas aeruginosa.
    Xu Z; Islam S; Wood TK; Huang Z
    Biomed Res Int; 2015; 2015():506782. PubMed ID: 25954752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.
    Vital-Lopez FG; Reifman J; Wallqvist A
    PLoS Comput Biol; 2015 Oct; 11(10):e1004452. PubMed ID: 26431398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa.
    Kuchma SL; Connolly JP; O'Toole GA
    J Bacteriol; 2005 Feb; 187(4):1441-54. PubMed ID: 15687209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine Limitation Impairs Pathogen Expansion and Biofilm Formation Capacity.
    Jochim A; Shi T; Belikova D; Schwarz S; Peschel A; Heilbronner S
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm.
    Sigurdsson G; Fleming RM; Heinken A; Thiele I
    PLoS One; 2012; 7(4):e34337. PubMed ID: 22523548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development.
    Finelli A; Gallant CV; Jarvi K; Burrows LL
    J Bacteriol; 2003 May; 185(9):2700-10. PubMed ID: 12700249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of virulence factors, antimicrobial resistance patterns and biofilm formation of Pseudomonas aeruginosa and Staphylococcus spp. strains isolated from corneal infection.
    Heidari H; Hadadi M; Sedigh Ebrahim-Saraie H; Mirzaei A; Taji A; Hosseini SR; Motamedifar M
    J Fr Ophtalmol; 2018 Nov; 41(9):823-829. PubMed ID: 30292385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1.
    Varadarajan AR; Allan RN; Valentin JDP; Castañeda Ocampo OE; Somerville V; Pietsch F; Buhmann MT; West J; Skipp PJ; van der Mei HC; Ren Q; Schreiber F; Webb JS; Ahrens CH
    NPJ Biofilms Microbiomes; 2020 Oct; 6(1):46. PubMed ID: 33127897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation.
    Chen L; Zou Y; Kronfl AA; Wu Y
    Microbiologyopen; 2020 Mar; 9(3):e991. PubMed ID: 31961499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
    Ramsey MM; Whiteley M
    Mol Microbiol; 2004 Aug; 53(4):1075-87. PubMed ID: 15306012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity in surface sensing suggests a division of labor in
    Armbruster CR; Lee CK; Parker-Gilham J; de Anda J; Xia A; Zhao K; Murakami K; Tseng BS; Hoffman LR; Jin F; Harwood CS; Wong GC; Parsek MR
    Elife; 2019 Jun; 8():. PubMed ID: 31180327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas aeruginosa Biofilm Antibiotic Resistance Gene
    Hall CW; Hinz AJ; Gagnon LB; Zhang L; Nadeau JP; Copeland S; Saha B; Mah TF
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29352081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms.
    Klausen M; Aaes-Jørgensen A; Molin S; Tolker-Nielsen T
    Mol Microbiol; 2003 Oct; 50(1):61-8. PubMed ID: 14507363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of exogenous glucose on Pseudomonas aeruginosa biofilm formation and antibiotic resistance.
    She P; Wang Y; Liu Y; Tan F; Chen L; Luo Z; Wu Y
    Microbiologyopen; 2019 Dec; 8(12):e933. PubMed ID: 31532581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal.
    Skariyachan S; Sridhar VS; Packirisamy S; Kumargowda ST; Challapilli SB
    Folia Microbiol (Praha); 2018 Jul; 63(4):413-432. PubMed ID: 29352409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic determinants of Pseudomonas aeruginosa biofilm establishment.
    Müsken M; Di Fiore S; Dötsch A; Fischer R; Häussler S
    Microbiology (Reading); 2010 Feb; 156(Pt 2):431-441. PubMed ID: 19850623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of quorum sensing in UVA-induced biofilm formation in
    Pezzoni M; Pizarro RA; Costa CS
    Microbiology (Reading); 2020 Aug; 166(8):735-750. PubMed ID: 32496187
    [No Abstract]   [Full Text] [Related]  

  • 19. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.
    Lee JH; Kim YG; Cho MH; Lee J
    Microbiol Res; 2014 Dec; 169(12):888-96. PubMed ID: 24958247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture.
    Ghafoor A; Hay ID; Rehm BH
    Appl Environ Microbiol; 2011 Aug; 77(15):5238-46. PubMed ID: 21666010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.