These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23451712)

  • 1. Metabolic transit of dietary methylglyoxal.
    Degen J; Vogel M; Richter D; Hellwig M; Henle T
    J Agric Food Chem; 2013 Oct; 61(43):10253-60. PubMed ID: 23451712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of in vitro simulated gastroduodenal digestion on methylglyoxal concentration of Manuka ( Lectospermum scoparium ) honey.
    Daglia M; Ferrari D; Collina S; Curti V
    J Agric Food Chem; 2013 Mar; 61(9):2140-5. PubMed ID: 23406199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof.
    Grainger MN; Manley-Harris M; Fauzi NA; Farid MM
    Food Chem; 2014 Jun; 153():134-9. PubMed ID: 24491711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: Possible therapeutic implications.
    Majtan J; Klaudiny J; Bohova J; Kohutova L; Dzurova M; Sediva M; Bartosova M; Majtan V
    Fitoterapia; 2012 Jun; 83(4):671-7. PubMed ID: 22366273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the Reaction of Dietary Methylglyoxal and Creatine during Simulated Gastrointestinal Digestion and in Human Volunteers.
    Treibmann S; Groß J; Pätzold S; Henle T
    Nutrients; 2022 Aug; 14(17):. PubMed ID: 36079854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antistaphylococcal activity and metabolite profiling of manuka honey (Leptospermum scoparium L.) after in vitro simulated digestion.
    Mannina L; Sobolev AP; Coppo E; Di Lorenzo A; Nabavi SM; Marchese A; Daglia M
    Food Funct; 2016 Mar; 7(3):1664-70. PubMed ID: 26948514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand.
    Mavric E; Wittmann S; Barth G; Henle T
    Mol Nutr Food Res; 2008 Apr; 52(4):483-9. PubMed ID: 18210383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone.
    Rückriemen J; Klemm O; Henle T
    Food Chem; 2017 Sep; 230():540-546. PubMed ID: 28407946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey.
    Atrott J; Haberlau S; Henle T
    Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (Leptospermum scoparium).
    Rückriemen J; Schwarzenbolz U; Adam S; Henle T
    J Agric Food Chem; 2015 Sep; 63(38):8488-92. PubMed ID: 26365614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the Release of Methylglyoxal (MGO) from Honey and Honey-Based Formulations.
    Hossain ML; Lim LY; Hammer K; Hettiarachchi D; Locher C
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Protein-Bound Maillard Reaction Products during the Storage of Manuka Honey.
    Thierig M; Siegel E; Henle T
    J Agric Food Chem; 2023 Oct; 71(41):15261-15269. PubMed ID: 37796058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary influence on urinary excretion of 3-deoxyglucosone and its metabolite 3-deoxyfructose.
    Degen J; Beyer H; Heymann B; Hellwig M; Henle T
    J Agric Food Chem; 2014 Mar; 62(11):2449-56. PubMed ID: 24579887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Manley-Harris M; Molan PC
    Carbohydr Res; 2009 May; 344(8):1050-3. PubMed ID: 19368902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part I--Honey systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():484-91. PubMed ID: 26920322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part II--Model systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():492-9. PubMed ID: 26920323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping Methylglyoxal by Genistein and Its Metabolites in Mice.
    Wang P; Chen H; Sang S
    Chem Res Toxicol; 2016 Mar; 29(3):406-14. PubMed ID: 26881724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylglyoxal binds to amines in honey matrix and 2'-methoxyacetophenone is released in gaseous form into the headspace on the heating of manuka honey.
    Kato Y; Kishi Y; Okano Y; Kawai M; Shimizu M; Suga N; Yakemoto C; Kato M; Nagata A; Miyoshi N
    Food Chem; 2021 Feb; 337():127789. PubMed ID: 32795863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique fluorescence and high-molecular weight characteristics of protein isolates from manuka honey (Leptospermum scoparium).
    Rückriemen J; Hohmann C; Hellwig M; Henle T
    Food Res Int; 2017 Sep; 99(Pt 1):469-475. PubMed ID: 28784507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.