These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23451786)

  • 1. Seed-development programs: a systems biology-based comparison between dicots and monocots.
    Sreenivasulu N; Wobus U
    Annu Rev Plant Biol; 2013; 64():189-217. PubMed ID: 23451786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systems biology approach toward understanding seed composition in soybean.
    Li L; Hur M; Lee JY; Zhou W; Song Z; Ransom N; Demirkale CY; Nettleton D; Westgate M; Arendsee Z; Iyer V; Shanks J; Nikolau B; Wurtele ES
    BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S9. PubMed ID: 25708381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis.
    Santos-Mendoza M; Dubreucq B; Baud S; Parcy F; Caboche M; Lepiniec L
    Plant J; 2008 May; 54(4):608-20. PubMed ID: 18476867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seeds-An evolutionary innovation underlying reproductive success in flowering plants.
    Baroux C; Grossniklaus U
    Curr Top Dev Biol; 2019; 131():605-642. PubMed ID: 30612632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots.
    Li C; Li M; Dunwell JM; Zhang YM
    BMC Evol Biol; 2012 Jan; 12():15. PubMed ID: 22292855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary origins of the endosperm in flowering plants.
    Baroux C; Spillane C; Grossniklaus U
    Genome Biol; 2002 Aug; 3(9):reviews1026. PubMed ID: 12225592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and epigenetic processes in seed development.
    Lohe AR; Chaudhury A
    Curr Opin Plant Biol; 2002 Feb; 5(1):19-25. PubMed ID: 11788303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits.
    Boulard C; Fatihi A; Lepiniec L; Dubreucq B
    Biochim Biophys Acta Gene Regul Mech; 2017 Oct; 1860(10):1069-1078. PubMed ID: 28866096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental control of Arabidopsis seed oil biosynthesis.
    Wang H; Guo J; Lambert KN; Lin Y
    Planta; 2007 Aug; 226(3):773-83. PubMed ID: 17522888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A network of local and redundant gene regulation governs Arabidopsis seed maturation.
    To A; Valon C; Savino G; Guilleminot J; Devic M; Giraudat J; Parcy F
    Plant Cell; 2006 Jul; 18(7):1642-51. PubMed ID: 16731585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3.
    Kagaya Y; Toyoshima R; Okuda R; Usui H; Yamamoto A; Hattori T
    Plant Cell Physiol; 2005 Mar; 46(3):399-406. PubMed ID: 15695450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed.
    Boulard C; Thévenin J; Tranquet O; Laporte V; Lepiniec L; Dubreucq B
    Biochim Biophys Acta Gene Regul Mech; 2018 May; 1861(5):443-450. PubMed ID: 29580949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of storage protein synthesis during dicotyledon seed filling.
    Verdier J; Thompson RD
    Plant Cell Physiol; 2008 Sep; 49(9):1263-71. PubMed ID: 18701524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development.
    Parcy F; Valon C; Kohara A; Miséra S; Giraudat J
    Plant Cell; 1997 Aug; 9(8):1265-77. PubMed ID: 9286105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dying to live: cell elimination as a developmental strategy in angiosperm seeds.
    Ingram GC
    J Exp Bot; 2017 Feb; 68(4):785-796. PubMed ID: 27702990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.
    Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J
    BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.).
    Yamasaki Y; Gao F; Jordan MC; Ayele BT
    BMC Plant Biol; 2017 Sep; 17(1):154. PubMed ID: 28915785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf growth in dicots and monocots: so different yet so alike.
    Nelissen H; Gonzalez N; Inzé D
    Curr Opin Plant Biol; 2016 Oct; 33():72-76. PubMed ID: 27344391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reserve accumulation in legume seeds.
    Gallardo K; Thompson R; Burstin J
    C R Biol; 2008 Oct; 331(10):755-62. PubMed ID: 18926489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide signalling during angiosperm seed development.
    Ingram G; Gutierrez-Marcos J
    J Exp Bot; 2015 Aug; 66(17):5151-9. PubMed ID: 26195729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.